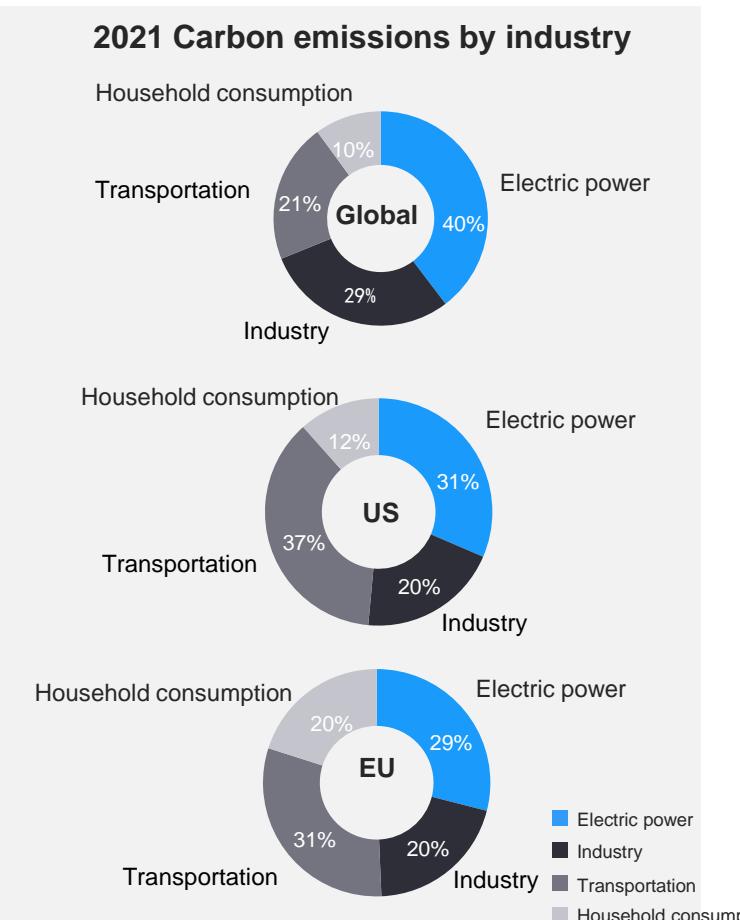


Ten technical trends of lithium-ion battery industry

Strategy realized


The better the question. The better the answer.
The better the world works.

EY安永
Parthenon 博智隆

1.1 Global new energy policy

Transportation industry ranks among top three in carbon emissions

Global new energy policy guides carbon reduction in transportation industry

We will move faster to develop green and low-carbon modes of transportation to keep the growth of carbon emissions in the transportation domain within an appropriate range. We will promote low-carbon transformation of transportation vehicles and equipment, vigorously promote new-energy vehicles, while gradually reducing the proportion of cars that run on traditional oil-based fuels in new car sales and car ownership, promote the replacement of public service vehicles with electric vehicles...

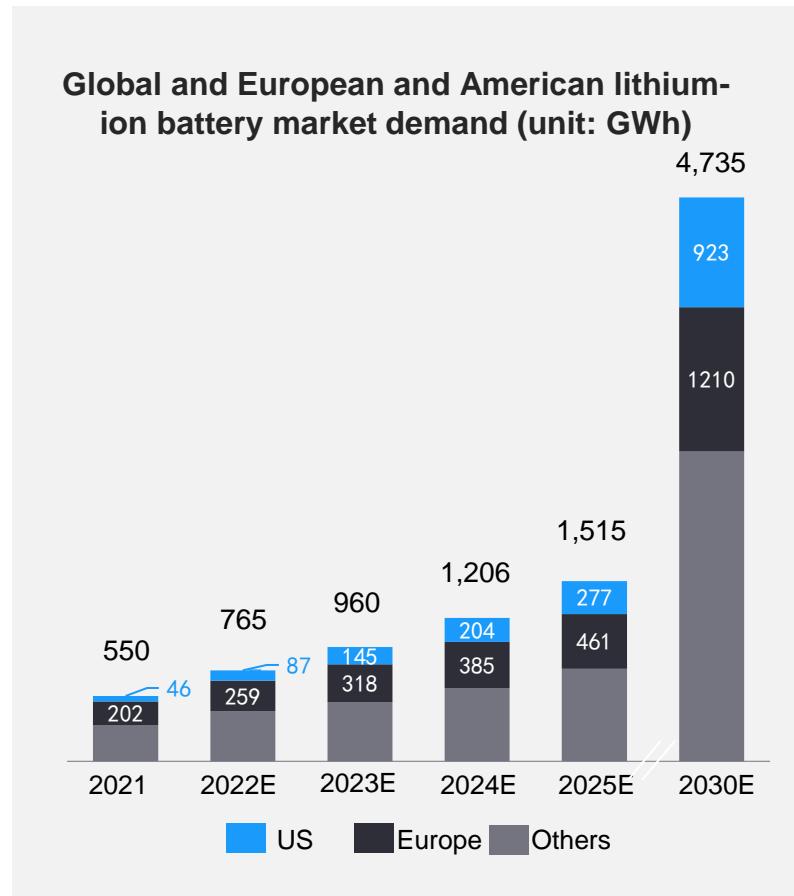
China's Action Plan for Carbon Dioxide Peaking Before 2030

Ensure the US achieves a 100% clean energy economy and reaches net-zero emissions no later than 2050. Use the federal government procurement system in the short run to achieve zero-emission vehicles, and develop rigorous new fuel economy standards aimed at ensuring 100% of new sales for light- and medium-duty vehicles will be zero emissions. Speed up the promotion of electric vehicles in medium and long run, and deploy more than 500,000 new public charging outlets before the end of 2030...

US Plan for a Clean Energy Revolution and Environmental Justice

Speed up the process of vehicle electrification, increase high-speed rail traffic, promote automated transport equipment at large scale, drive the entry of zero-emission vessels into market, deploy more shared bicycle infrastructures, among others, to ultimately build a clean multimodal transport network system. It aims to deliver a 90% reduction in the transport sector's emissions by 2050 compared with 2020 level...

EU Sustainable and Smart Mobility Strategy

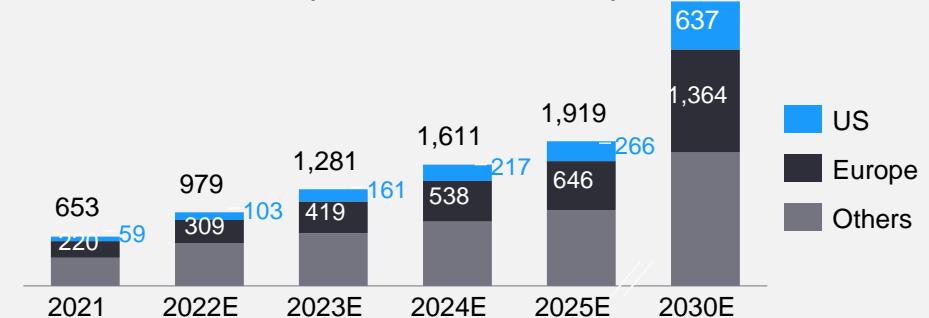

Development of lithium-ion batteries is highly related to national energy security

To vigorously promote the development of important technologies and basic equipment in the field of new energy, such as lithium-ion batteries, electrochemical energy storage and electric vehicles, gradually reduce our reliance on oil and explore a sustainable energy security path is an important strategic direction for many countries around the world

	2012	2021	Increase
Global installed capacity of electrochemical energy storage (GW)	<1	20	x20
Global market shipment of lithium-ion batteries (GWh)	<40	562	x14
Global sales volume of new energy vehicles (10 thousand units)	<15	653	x44

1.2 Global lithium-ion battery market size

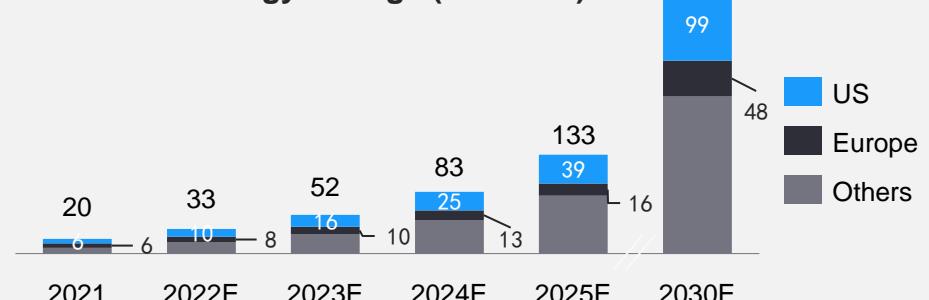
Global and European and American lithium-ion battery market size forecast



Growth of lithium-ion batteries is driven by the new energy vehicles and energy storage which are gaining pace

Driving force 1: New energy vehicles

Many countries have announced their aim to achieve carbon neutrality by 2050/2060, and new energy vehicles are deemed as an important part of carbon reduction. Therefore, many countries have released relevant policies to promote the development of zero-emission new energy vehicles. The industry embraces a window period of vigorous development


Sales volume of global and European and American new energy vehicles¹ (Unit: 10 thousand units)

Driving force 2: Energy storage

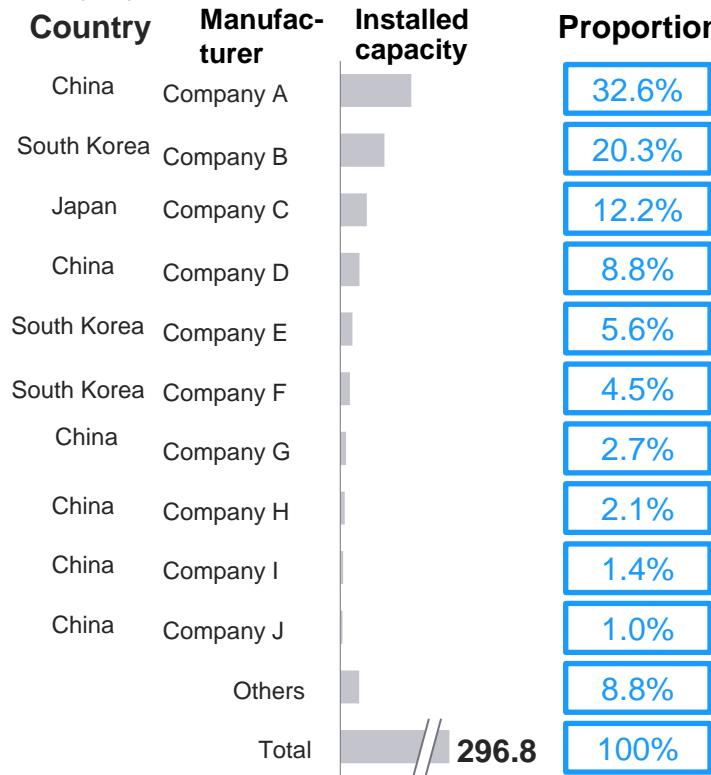
The carbon peak and neutrality goals have underlined the strategic position of renewable energy. As the key technology to support the development of renewable energy, energy storage is heralding the dawn. In future, the energy storage battery market is expected to see an explosive growth

Global and European and American installed capacity of electrochemical energy storage (unit: GW)

Note: 1. The sales volume of new energy vehicles herein only includes those of BEVs, PHEVs and EREVs.

Source: LMC Automotive, EVTank, Zheshang Securities, Bloomberg New Energy Finance, Intelligence Research Group, Public data, Da Dong Times Database (TD), EY Analysis

1. Market analysis of lithium-ion batteries and equipment


1.3 Challenges and bottlenecks to install lithium-ion battery capacity faced by countries and regions outside China, Japan and South Korea

Most countries and regions show an unbalanced growth in installed capacity of lithium-ion battery

Major four challenges: lack of technological base, industrial chain support, core talents and construction experience

Rankings and proportions of global power batteries by installed capacity

GWh, %, 2021

Challenge 1: Lack of technological base

Case 1: Europe is years behind Asia in technological reserves of the main components of cells, such as anode and cathode materials, electrolyte and separators
Case 2: India, Southeast Asia and other countries lack local large leading enterprises and relevant technology accumulation
...

Challenge 2: Lack of industrial chain support

Case 1: For battery anode and cathode materials, electrolyte, battery separators and other raw materials, US totally relies on overseas processing and import
Case 2: Due to the limited mineral resources in Europe, its electrolyte and separators are mainly supplied by manufacturers in Asia
...

Challenge 3: Lack of core talents

Case 1: North America lacks skilled engineers in manufacturing industry. Therefore, technical talents need to be introduced at high costs
Case 2: Europe, which as a whole has a labor shortage, needs to introduce talents from Asia. However, the application process for labor visas is complicated
...

Challenge 4: Lack of construction experience

Case 1: The hollowing-out problem of the manufacturing industry in the US has resulted in high manufacturing costs. A123 had tried to bring production line back but suffered from serious losses, being eventually acquired by a Chinese company.
Case 2: Europe lacks systematic methodologies as a support in integration, adjustment, calibration, cost control and other aspects
...

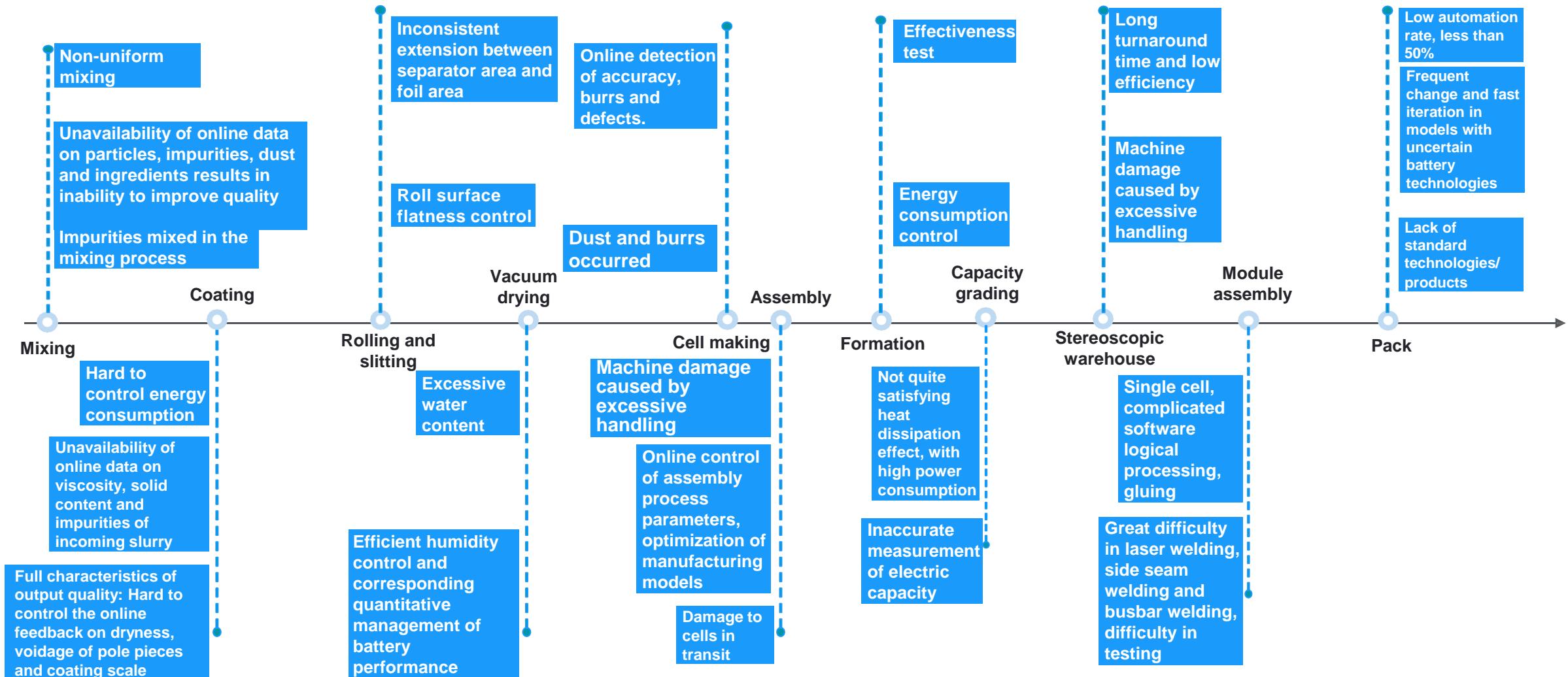
2.1 Pain points and challenges in the manufacturing process of pole pieces

Pole pieces			
Key pain points	Pain points of mixing	Pain points of coating	Pain points of rolling and slitting
	<ol style="list-style-type: none"> 1. Non-uniform mixing 2. Lack of online data on particles, impurities, dust and ingredients 3. Impurities mixed in the mixing process <p>1. Non-uniform mixing → Abnormal distribution of materials inside the batteries → Reduction in battery capacity, increase in battery internal resistance and reduction in battery cycle life → Safety issues emerged</p> <p>2. The lack of online data on particles, impurities, dust and ingredients results in inability to improve quality</p> <p>3. Impurities mixed in the mixing process → Impurities pierce through the separators → Short circuit inside batteries, abnormal self discharge, and reduction in battery life → Safety issues</p>	<ol style="list-style-type: none"> 1. High energy consumption 2. Lack of online data on viscosity, solid content and impurities of incoming slurry 3. Hard to control the online feedback on full characteristics of output quality <ol style="list-style-type: none"> 1. Current unit energy consumption of coaters: 2.3~3KWh/Wh 2. Non-uniform coating as a result of unavailability of online data on viscosity, solid content and impurities of incoming slurry, which influences the quality of coating 3. Full characteristics of output quality: Hard to control the online feedback on dryness, voidage of pole pieces and coating scale, which results in high defective percentage 	<ol style="list-style-type: none"> 1. Inconsistent extension between separator area and foil area 2. Hard to keep the same thickness <ol style="list-style-type: none"> 1. Inconsistent extension between separator area and foil area may result in cambers/rippled edge, which may cause strip breakage 2. Poor consistency in thickness. Inconsistent electric current density tends to cause precipitation of lithium dendrite, which is unfavorable for the performance of cells. The severe polarization of batteries influences the capacity of cells

2.2 Pain points and difficulties in the assembly process

Assembly			
Key pain points	Pain points of vacuum drying	Pain points of cell making	Pain points of assembly
	<ol style="list-style-type: none"> 1. Excessive water content 2. Efficient humidity control and corresponding quantitative management of battery performance <p>1. Excessive water content may cause product scrapped, quality decline and even product explosion</p> <p>2. High air humidity may cause the lithium-ion battery to absorb moisture from the air, and its internal humidity may also increase accordingly. After charging, the moisture breaks down and the pressure inside the battery is high. Meanwhile, it's easy to cause bulge in the process of electrolyte injection, which may influence the thickness and SEI films, or incomplete formation, etc.</p>	<ol style="list-style-type: none"> 1. Dust and burrs occurred 2. Online detection of accuracy, burrs and defects. <p>1. Slicing causes burrs and dust → Battery short circuit → Hidden safety troubles of battery</p> <p>2. Inadequate detection on accuracy, burrs and defects of cells may influence the quality of chips</p>	<ol style="list-style-type: none"> 1. Machine damage caused by excessive handling 2. Damage to cells in transit 3. Online control of assembly process parameters, optimization of manufacturing models <p>1. Excessive handling of assembly equipment tends to cause damage to machine</p> <p>2. lithium-ion batteries after assembly need to be picked up inside the assembly unit → Damage to the assembly unit, and easy to damage the cells, resulting in high costs</p> <p>3. For online control of assembly process parameters and optimization of manufacturing models, improper management may influence the efficiency and quality of assembly</p>

2.3 Pain points and difficulties in capacity grading and formation

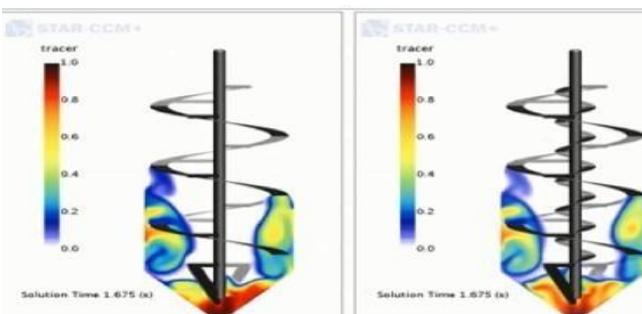

Capacity grading and formation

Key pain points Issue raised	Pain points of formation	Pain points of capacity grading	Pain points of stereoscopic warehouse
	<p>1. Energy consumption control</p> <p>2. Effectiveness test</p> <p>1. The drying process of electrodes and the running cost of drying unit in the drying room during the production of batteries consume more energy</p> <p>2. Due to its various types and great difference in models, the cell has higher requirements for the effectiveness and compatibility of formation and capacity grading testing equipment. Poor effectiveness will make the formation a time-consuming and laborious process.</p>	<p>1. Not quite satisfying heat dissipation effect, with high power consumption</p> <p>2. Inaccurate measurement of electric capacity</p> <p>1. Cells charge and discharge → Massive thermal loss arising from the charging and discharging panel, which results in overtemperature → Damage to electronic components → Use air conditioner and a large number of fans to blow the charging and discharging panel, which is far away from the air conditioner and fans → Not quite satisfying heat dissipation effect, with high power consumption of air conditioner and fans.</p> <p>2. During the testing of electric capacity of lithium-ion batteries, it is found that heat is different due to different current or voltage of these lithium-ion batteries → Uneven and non-constant environmental temperatures of lithium-ion batteries → Inaccurate measurement of electric capacity</p>	<p>1. Long turnaround time and low efficiency</p> <p>2. Machine damage caused by excessive handling</p> <p>1. In case of delivery of goods from the stereoscopic warehouse, all the pallets of the same layer need to be taken out in order, which is long in length → Very long turnaround time of pallets of the same layer, with low working efficiency → Unsmooth logistics and low efficiency of inbound and outbound logistics</p> <p>2. The handling process is complicated and frequent. Excessive handling tends to cause damage to machine. There may be frequent downtime during the assembly process with high failure rate</p>

2.4 Pain points and difficulties in the manufacturing process of module/pack

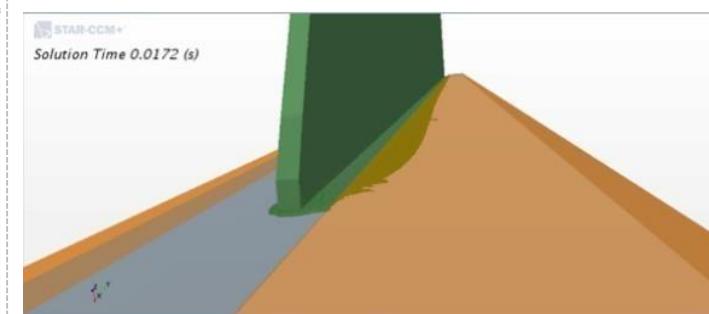
Module/pack	
Key pain points	Issue raised
Pain points of module assembly	Pain points of packing
<p>1. Single cell, complicated software logical processing, gluing</p> <p>2. Great difficulty in laser welding, side seam welding and busbar welding, difficulty in testing</p> <p>1. The software logical processing of single cell is complicated, which may spend a lot of time and costs; serious sinking of cells may cause insufficient gluing areas, resulting in failure of cell fixing and cracking of modules after long-term driving of vehicles, which may cause driving safety risk; serious bulge of cells may cause excessive glue, polluting the equipment and consuming manpower to clean the glue, and residual glue may cause breakage of blue film, and even failure of insulation.</p> <p>2. There is great difficulty in laser welding, side seam welding and busbar welding. Especially, in module busbar welding, it's necessary to check whether there is any blow holes, excess weld metal of welding slag and the length of welding seam after the welding, and measure whether the length and width of the welding seam meet the specifications. Otherwise, they may seriously impact the quality of welding seam.</p>	<p>1. Low automation rate, less than 50%</p> <p>2. Frequent change and fast iteration in models with uncertain battery technologies</p> <p>3. Lack of standard technologies/products</p> <p>1. Low automation rate, less diversified product, low capacity, manual switch of products, long delivery cycle, less intelligent production lines and unstable product quality</p> <p>2. Frequent battery technology iteration causes frequent change in models and difficulty in determining technologies, resulting in increase of packing costs</p> <p>3. Non-unified downstream lithium-ion battery manufacturing processes and diversified specifications and models of lithium-ion batteries in the market cause difficulty in standardization in the equipment industry.</p>

2.5 Key points of lithium-ion battery production

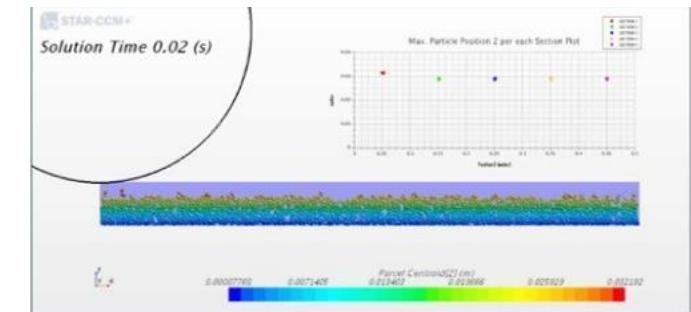

3.1 Simulation technology in lithium-ion battery production

Comprehensive multi-layer lithium-ion battery simulation solution – Production process

Major steps


Mixing

1. Modeling of mixing tank
2. Three-dimensional simulation on two-phase mixing of solid and liquid for the flow field distribution inside the mixing tank
3. Analysis of the speed of flow field, solid phase volume concentration and other distributions
4. Mixing experiment on cathode slurry of lithium-ion batteries, and explore the impact of different process parameters on viscosity, solid content of the mixed slurry and surface appearance of pole pieces


Coating

1. Set-up of base material components of coaters and assembly of geometric modeling
2. Set-up of properties of slurry for coating
3. Set-up of analysis division and output results
4. Creation of contact characteristics and referential constraints
5. Mesh splitting
6. Creation of load and boundary conditions
7. Creation of analysis tasks, submitting and post-processing.

Rolling

1. Modeling of coarsely granulated particle of rolling and coating materials and battery pole pieces from the microscopic to the mesoscopic scale
2. Modeling of coarsely granulated particle based on rolling and coating materials and battery pole pieces according to pre-set rolling parameters
3. Molecular dynamics simulation for rolling of battery pole pieces, obtaining rolling simulation results of battery pole pieces

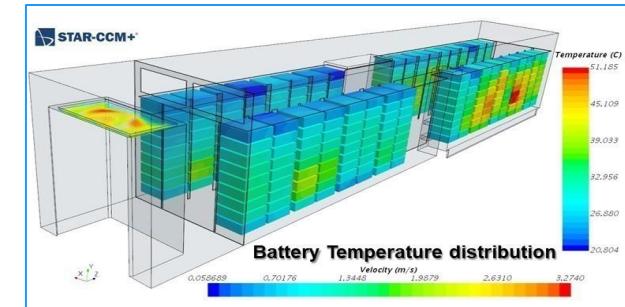
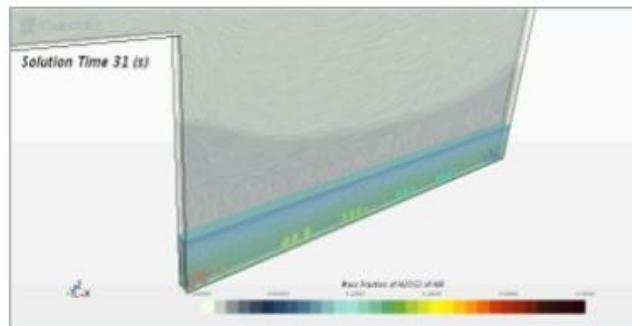
3.1 Simulation technology in lithium-ion battery production

Comprehensive multi-layer lithium-ion battery simulation solution – Production process

Major steps

Application scenarios

Drying



Electrolyte injection

Formation

1. Fully automated drying of lithium-ion batteries based on the motion simulation technology of industrial robots
2. Intelligent feeding by six-axis robots combined with flexible modules before drying lithium batter cells
3. Intelligent monitoring and control of the drying process by the closed-loop temperature control system
4. Intelligent blanking by six-axis robots combined with flexible modules after drying, achieving completely unmanned drying process

1. Set-up of injection system related parameters
2. Modeling of injection activation system
3. Extraction of fluid domain, mesh split of models with ICEM
4. Simulation of injection activation system

1. Simulation of formation process
2. Simulation of formation process based on the actual technical requirements for the formation workshop
3. After running the models, export statistical data based on analysis requirements, collect statistics on running status of each equipment (e.g., stackers) to find out bottlenecks in system and improve efficiency of production line

3.2 Integration of lithium-ion battery production equipment

Current status

- ▶ Coating, rolling and slitting integrated machine
- ▶ Rolling and slitting integrated machine
- ▶ Laser cutting and winding/stacking integrated machine

Coating, rolling and slitting integrated machine

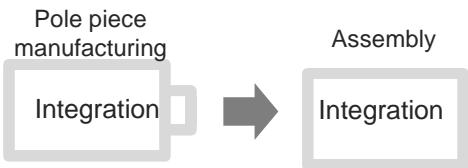
Single sided surface density $<\pm 1.2\%$, double sided surface density $<\pm 1.0\%$, $CPK>1.67$; resolving 100% of the crack phenomenon on pole piece edge, achieving 24-hour non-stop. It can reduce shrinking and unwinding devices and the input to connection of AGV, reduce labor costs by 70% after employing fewer labors, and reduce space energy consumption by 75%. It can also reduce wears and tears of materials for repeated winding and unwinding by more than 50% at most.

Integration of lithium-ion battery production equipment

Rolling and slitting integrated machine

Width: 950-1400mm, maximum roll pressure: 500T, roll gap: 0-1.5mm, minimum slitting width: 80mm, accuracy of slitting width: $\pm 0.1\text{mm}$, maximum rolling and slitting speed: 120m/min, slitting method: All-in-one cut with slitting by circle cutter.

Laser cutting and winding/stacking integrated machine



Capacity $\geq 100\text{m/min}$, and the accuracy is greatly improved compared with traditional die cutting. 1 set of laser cutting and winding integrated machine = 2 sets of die cutting machine + 1 set of traditional winder, saving space and labor costs and the handling process from die cutting to winding, improving the safety in production.

Future

- ▶ Mixing, coating, rolling and slitting integrated machine (pole piece integrated machine)
- ▶ Rolling, cutting, laser slitting and winding/stacking integrated machine
- ▶ Assembly integrated machine

Simplified lithium-ion battery production process

1. The “blade battery” plan has simplified battery pack structure by reducing the dimension of cells
2. Tesla’s solvent-free dry battery plan has simplified the manufacturing process of cell and electrodes

New trend in technology

1. The series connection formation technology has been maturely applied; there is a trend of controllable formation interface and predictable capacity in future; capacity grading may be cancelled when the uniformity of battery is above CPK2.0
2. The front end process is controllable, and the capacity inspection step can be cancelled
3. Through the lithium refilling technology, cells can be initially charged, and the capacity grading inspection may be cancelled

- ▶ In the future, by simplifying the production process, the manufacturing cycle of lithium-ion batteries may be greatly shortened to reduce costs
- ▶ The future will embrace a trend and possibility of using mixing, coating, rolling and slitting integrated machine (pole piece integrated machine), rolling, cutting, laser slitting and winding/stacking integrated machine and assembly integrated machine

3.3 Extensive application of laser technologies in various workshop sections

Cutting and forming of tabs

▶ The tab is the metallic conductor drawn from the anode and cathode of the battery, contacting with the outside when charging and discharging

Cutting object

▶ Cutting tabs of the anode and cathode out of pole pieces by laser
▶ Inconsistent alignment and dimensions as well as dust and burrs of tabs will cause self discharge or short circuit

Cutting process

▶ No consumables, high speed and stable cutting quality
▶ High flexibility in design, applicable to batteries of different types and specifications

Advantage of laser cutting

▶ The continuous improvement of power battery performance conversely forces intelligent manufacturing upgrade of lithium-ion battery production equipment, which has set higher requirements in photoelectric conversion efficiency and energy conservation and consumption reduction of laser devices.

Future prospect

Cutting of pole pieces

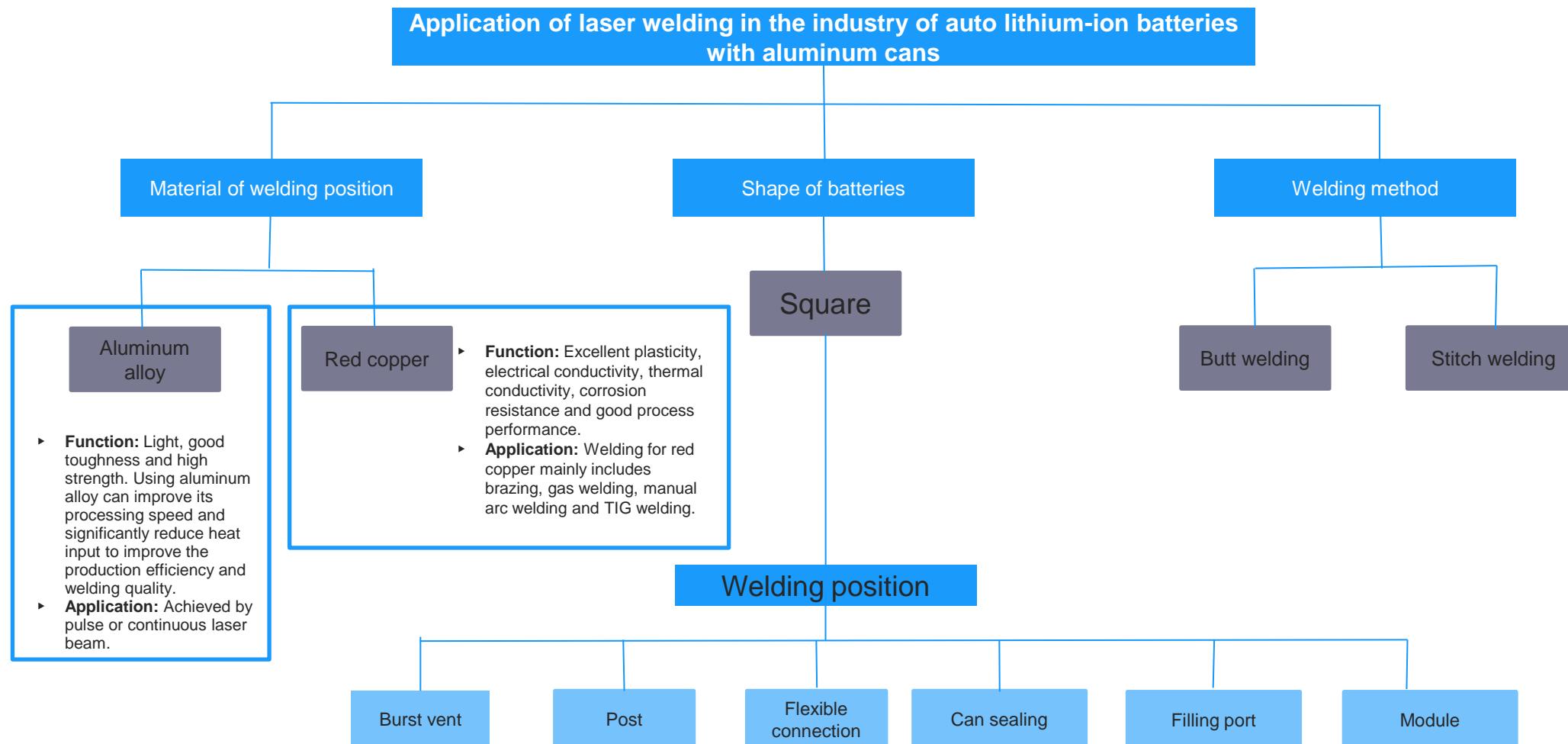
▶ Upon slurry coating, drying and rolling, the pole piece of lithium-ion batteries forms a three-layer composite structure comprised of current collector and coating on both sides

▶ Expose the pole pieces of batteries under laser beam to form holes on the pole pieces rapidly. As the beam moves, the holes may be connected to form cutting seam

▶ Laser cutting has the characteristics of high production efficiency and good process stability

Cutting of separators

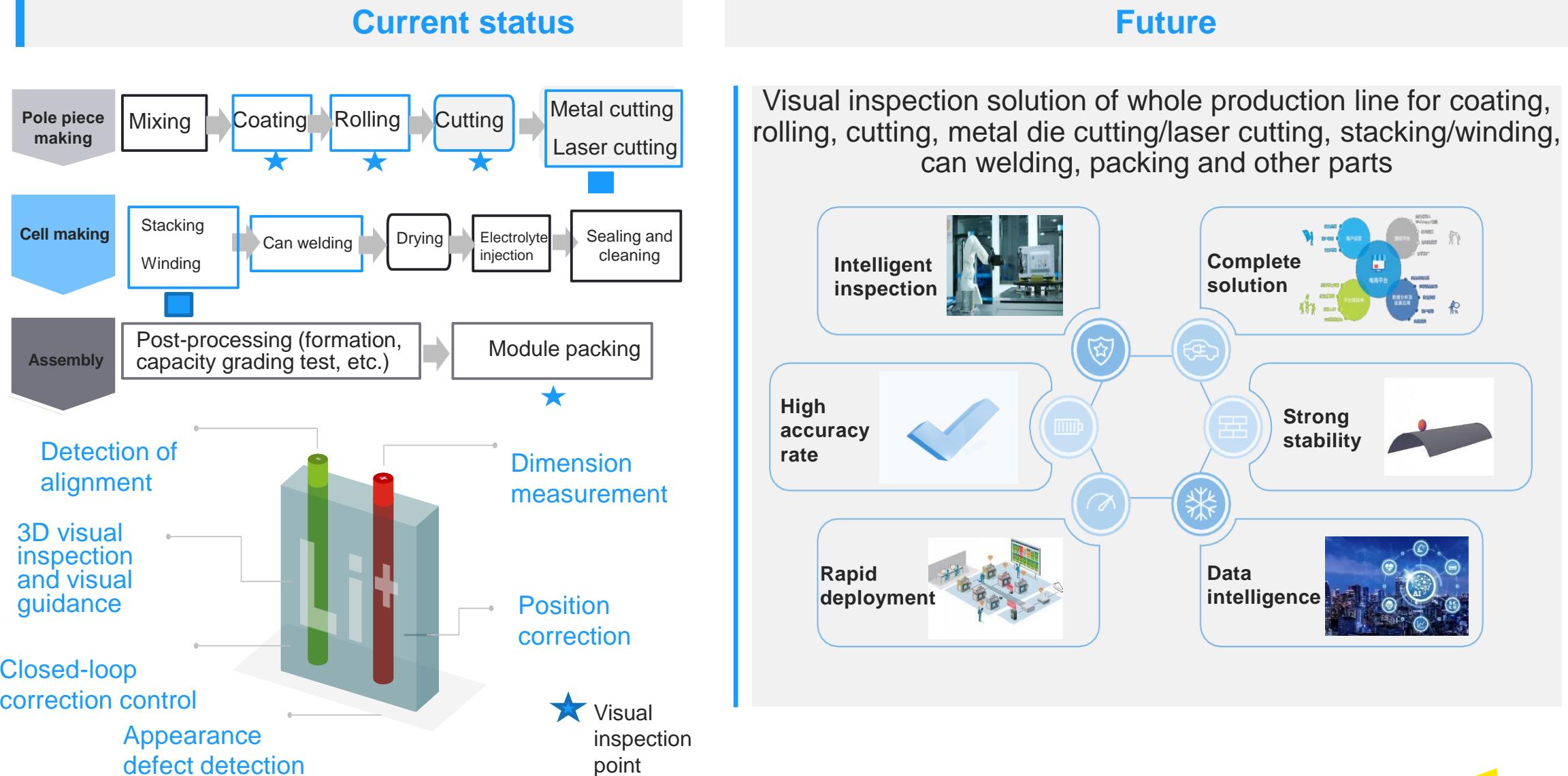
▶ The separator is made of PP/PE film, responsible for blocking the current conduction in the battery in case of short circuit and overheating

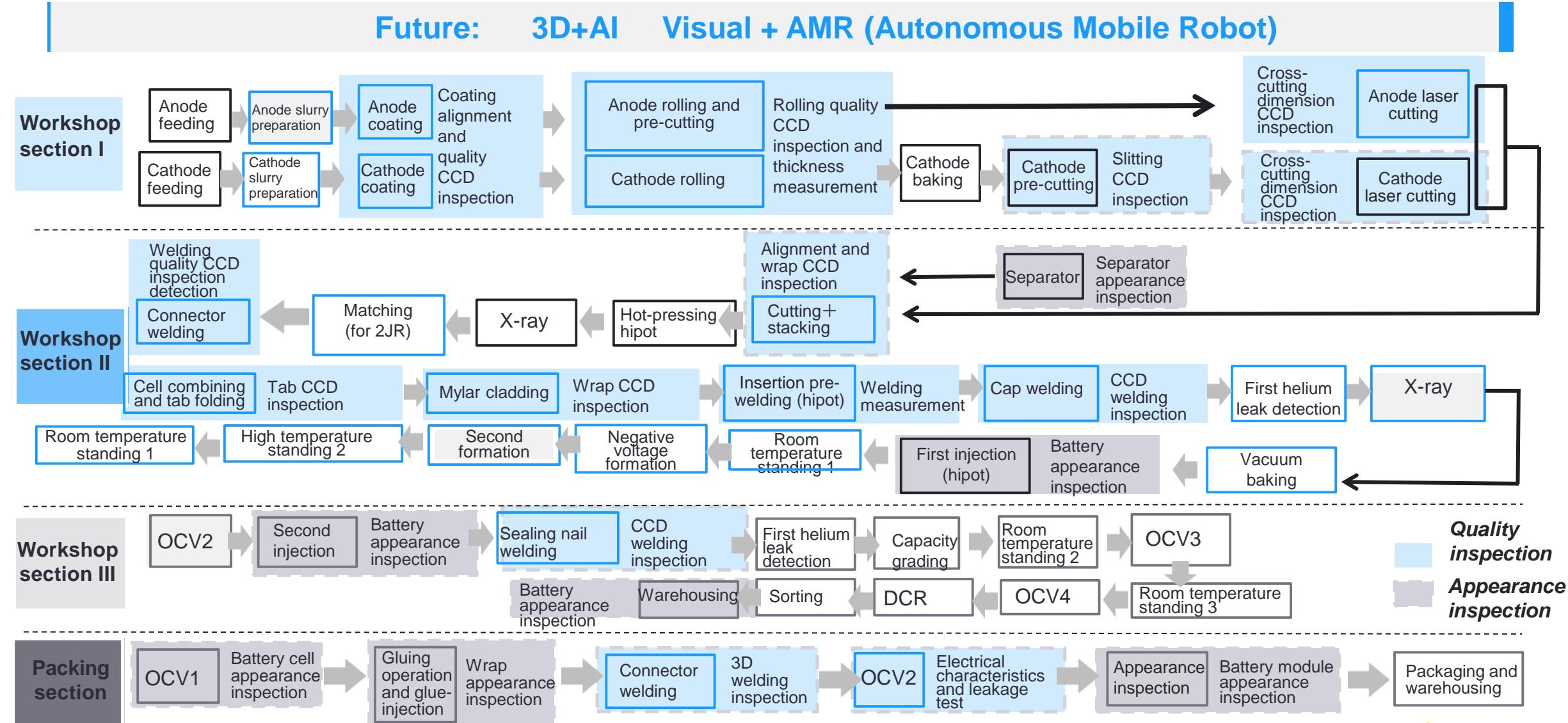

▶ The coil stocks of separator is cut into coil stocks that meet the requirements of specifications, sizes and quality through the cutting process

▶ The separator is composed of organic compounds, which will be well cut by laser cutting

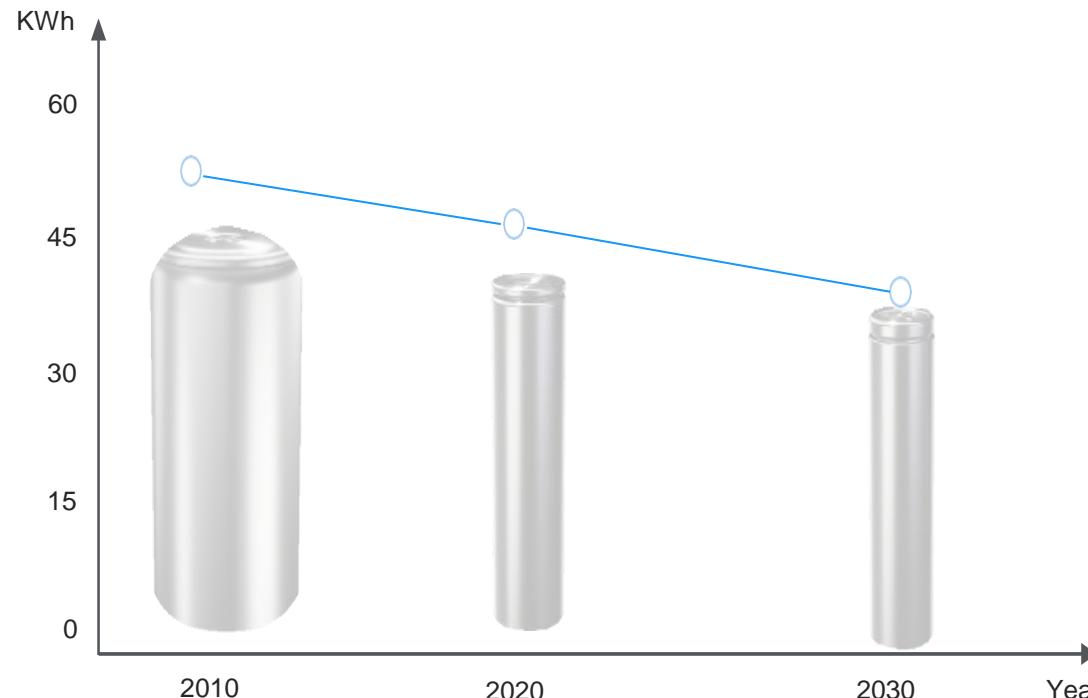
▶ Overall, the cutting technology of tabs currently is embracing a trend of faster and faster cutting speed, with higher and higher requirements on cutting quality. In addition, the changes in coating material ingredients and density of anode, the sandwich structure of non-metallic materials and other new designs have set higher and higher requirements on cutting process.

Application of laser cutting in power battery field


3.3 Extensive application of laser technologies in various workshop sections


3.3 Extensive application of laser technologies in various workshop sections

3.4 Extensive application of vision technologies in various workshop sections



3.4 Extensive application of vision technologies in various workshop sections

3.5 Application of environmental protection and energy saving

Current status: Energy consumption trend for production of 1Wh lithium-ion battery in 2010-2030: steady decline

Estimated trend of lithium-ion battery energy consumption: the energy consumption required to produce 1KWh lithium-ion battery will drop steadily from 50KWh in 2010 to less than 30kWh in 2030. With the application of energy-saving technology, the energy consumption required for future lithium-ion battery production will be significantly reduced.

Source: Discussion on Energy Saving and Emission Reduction Application of Iron Lithium Ion Batteries, Research on Integrated Control Technology for Low Energy Consumption and Low Pollution Production of Lithium-ion Power Batteries, Da Dong Times Database (TD), EY Analysis

Future energy-saving technologies

Production tends to be low pollution and low energy consumption

Mixing and coating stage

1. The solid content ratio is increased in the mixing stage, while waste heat utilization, circulating air supply and dry electrode technology are used in the coating stage.

The battery slurry contains binders and solvents, which are toxic to a certain extent. Improper control will cause pollution. The coater generates high-temperature NMP waste gas, so the mixing and coating stages are major pollution steps in lithium-ion battery production. In the future, process improvements will be made in these two stages to achieve low pollution and low energy consumption.

Desiccant air-conditioning system

2. In the future, the development direction of single-rotor low-dew-point desiccant air conditioners will iteratively progress from two aspects: the optimization of refrigeration systems and the innovation of new dehumidification rotors in dehumidification materials.

The desiccant air-conditioning system for lithium-ion battery production will be updated along with the large-scale production of lithium-ion batteries, which will bring about a series of industrial changes and industrial upgrading.

High-frequency PWM bidirectional switching power supply mode

3. High frequency switching power works at high frequency, and the switching frequency is generally controlled within the range of 50-100kHz to achieve high efficiency

With high-frequency PWM bidirectional switching power supply mode, the battery discharge energy will be fed back to the power grid. The automatic detection power supply of grid-fed battery formation and grading, charging and discharging was successfully developed at the earliest in China.

3.6 High-speed production

Efficiency comparison of each production link

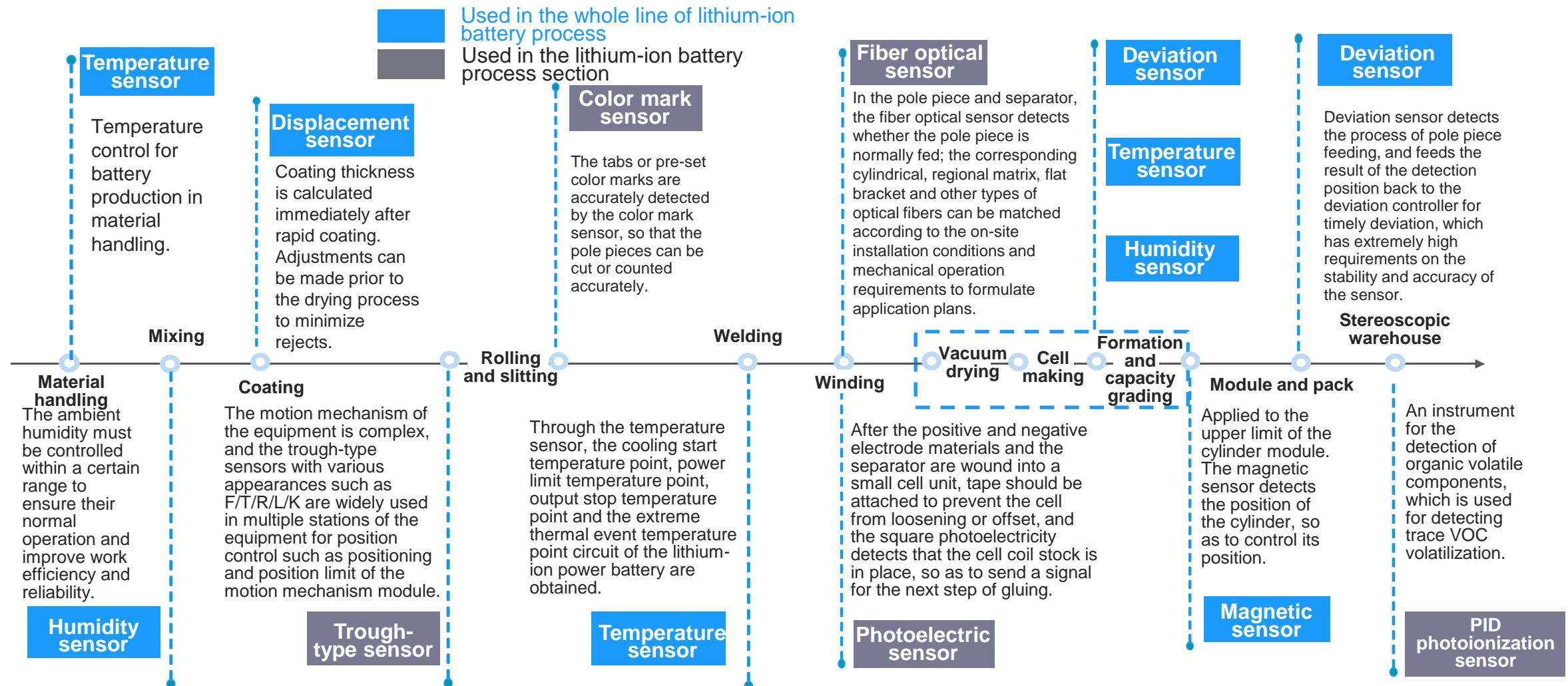
Production link	Efficiency	
	Current status	Future (within five years)
Slurry preparation	Annual production capacity of 6-9GWh/one production line for each positive and negative electrodes Solid content: 80% Time-consuming: 0.5-1.5H	Annual production capacity of 8-10GWh/one production line for each positive and negative electrodes Solid content: 85% Time-consuming: 0.4-1.2H
Coating	Bottom coating speed: 200-300m/min Effective coating width: 700mm-900mm-1200mm	Bottom coating speed: 220-350m/min Effective coating width: 800mm-1000mm-1400mm
Rolling	Speed: 100m/min Roller heat difference: $\pm 1.5^{\circ}\text{C}$	Speed: 120m/min Roller heat difference: $\pm 1.2^{\circ}\text{C}$
Winding	Speed: 3-3.5m/s	Speed: 3.5-4m/s
Baking	Baking time: 60min	Baking time: 30min
Capacity grading formation	Heating speed: 35 min (25°C-90°C, first cold start) Voltage accuracy: 0.5%F.S.	Heating speed: 30 min (25°C-90°C, first cold start) Voltage accuracy: 0.3%F.S.

High-speed production of lithium-ion battery will be the future development trend

The global lithium-ion battery industry is undergoing disruptive changes. The upgrade of power battery performance and quality competition accelerates the iteration of new equipment and new process.

In the slurry preparation process, the cyclic high-efficiency slurry preparation process and the twin-screw slurry preparation process have started to replace the traditional double-planetary slurry preparation process. The new-generation slurry preparation process both greatly improves the slurry preparation efficiency and solves the problems of unstable slurry preparation, high energy consumption, pollution, large area and other problems in the traditional slurry preparation system.

In the coating process, the double-sided coating and double-sided simultaneous drying process are also gradually replacing the traditional fold-back double-layer coater structure design. The advantage of the former is that it can significantly improve battery cycling, capacity, self discharge, internal resistance and other performance, improve drying quality, save equipment costs and operating costs and save installation space.


In the rolling procedure, the rolling and cutting integrated machine has both the functions of rolling and cutting of battery pole piece, which is replacing the traditional production method that the original rolling and cutting procedures are completed by two independent equipment. On the basis of high precision and high consistency in rolling and cutting of battery pole pieces, the production efficiency of battery pole pieces is significantly improved.

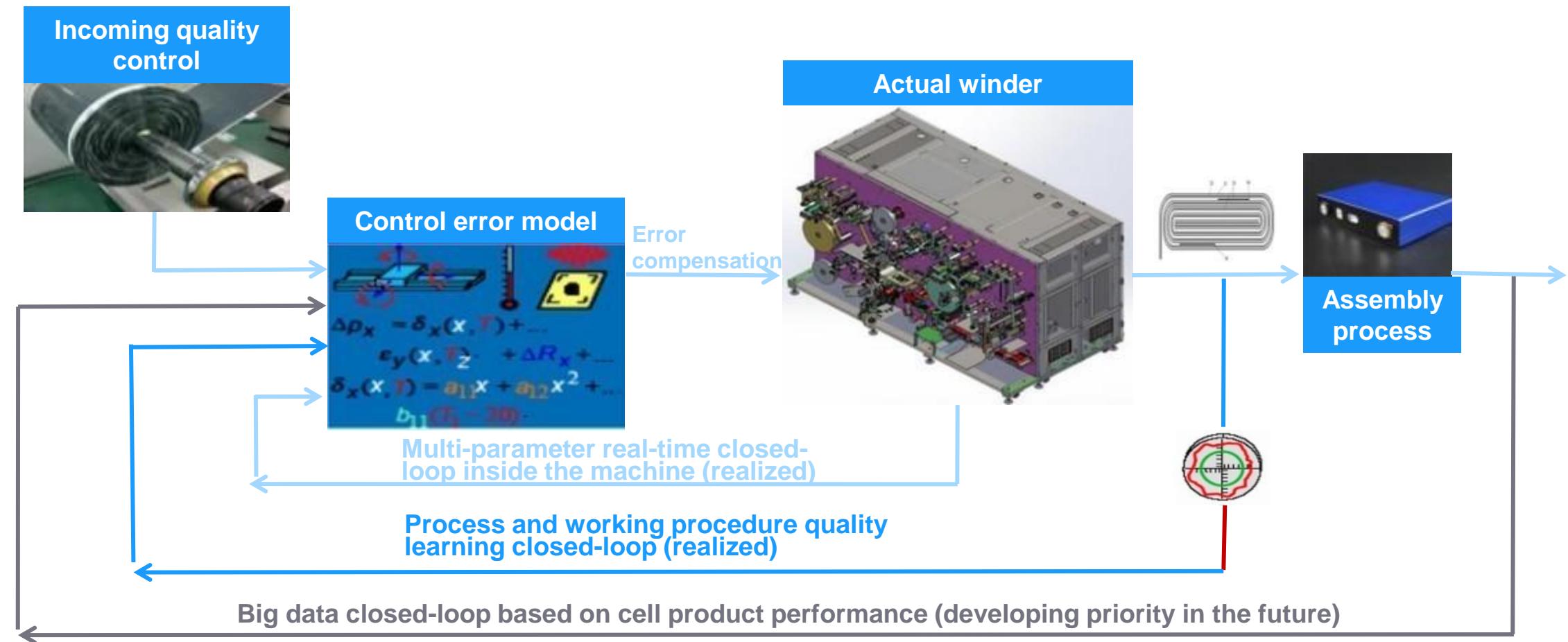
In the winding procedure, the winding machine process is evolving toward more efficient, compatible with a wide range of cell sizes, and higher precision. The application fields of laser die-cutting and winding integrated machine are also expanding.

In the process of cell baking, contact-type top-speed and high-vacuum baking equipment has also begun to be increasingly favored by battery companies. Its advantages are that it can greatly shorten the baking time, improve baking efficiency and reduce production energy consumption.

In the formation and capacity grading procedure, the new technology of high-voltage series formation and capacity grading also emerged. Using this technology, multiple batteries can be connected in series, using one current channel to detect multiple batteries. Compared with parallel devices, it can improve the consistency of formation or capacity grading products and significantly improve energy efficiency.

3.7 Application of sensor technology

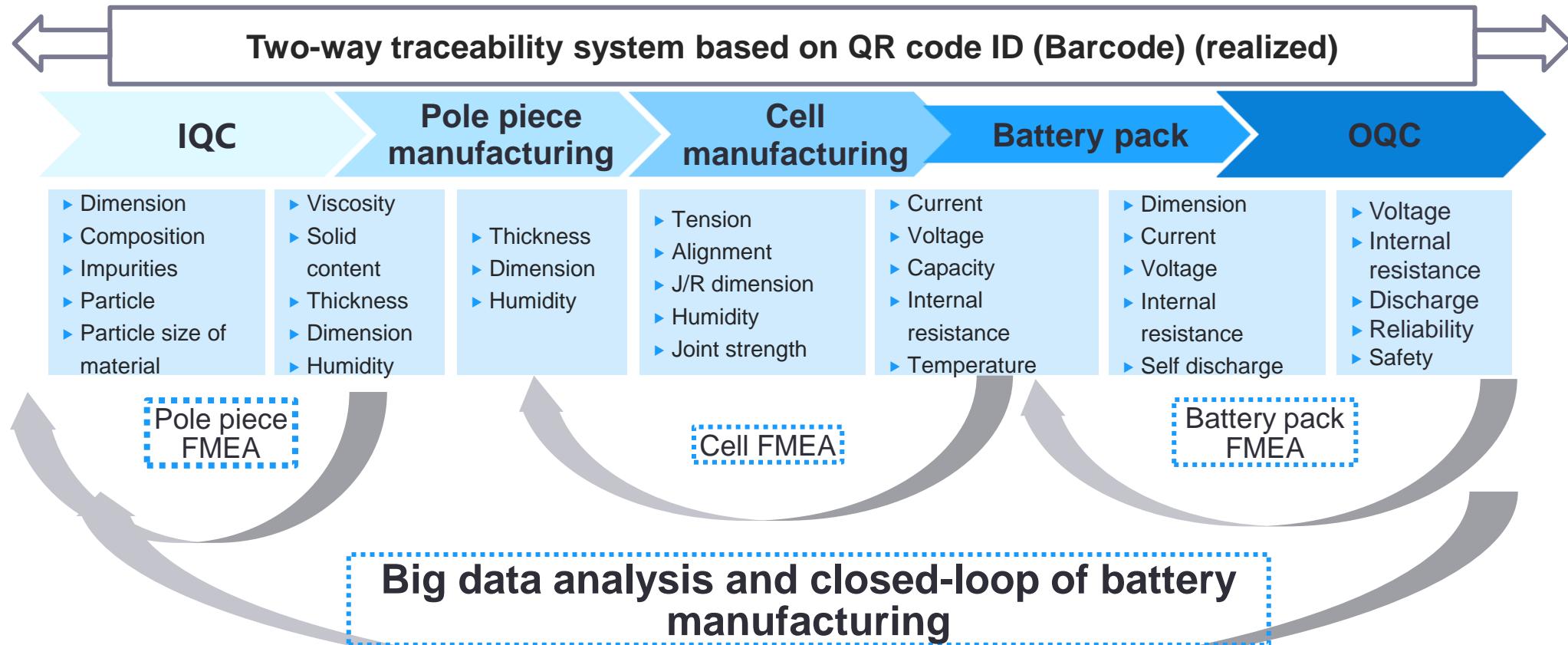
3.8 Digitalization of the whole process of production



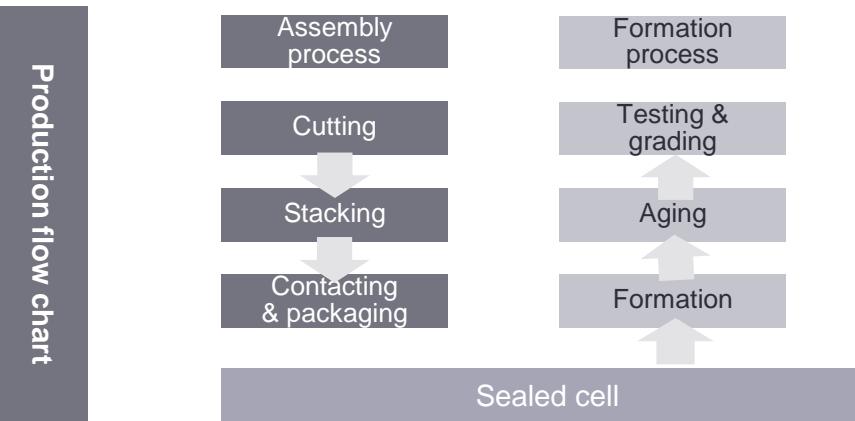
3.8 Digitalization of the whole process of production

Unmanned plant level for lithium-ion battery production	L0		L1	L2 (realized)	L3 (Breakthrough within three years)	L4 (Breakthrough within 10 years)
	Planning-level single machine automation	Specification-level working procedure automation	Integration-level information integration	Optimization-level manufacturing intelligence	Leading-level dark plant	
Information transfer (PDM)	Manual input of fixed program	Material delivery information program modularity	One-click release control verbalization	One-click release program self-adapting	One-click release transparent plant	
Machine operation	Machine monitoring by manual operation	Manual machine start	Centralized control of unit regulatory operation	Centralized control of unit autonomous operation	One button start for standby mode	
Quality monitoring	Manual quality monitoring	Automatic quality detection	Automatic judge of quality	Full quality closed-loop	Quality exemption	
Equipment operation and maintenance	Breakdown maintenance	Predictive maintenance	Health management	Machine learning operation and maintenance	Healthy operation and maintenance	
Manufacturing safety control	Manual quality monitoring	Safely self-diagnosis	Security monitoring	Security early warning closed loop	Full safety closed-loop	
Material handling	Manual loading and unloading of materials Manual handling of auxiliary materials Manual handling of waste materials	Automatic material handling Manual handling of auxiliary materials Waste collected by a single machine	Material with information flow Manual recovery of auxiliary materials Centralized disposal of waste	Manual recovery of auxiliary materials Automatic waste handling	In-and-out of material dark box	

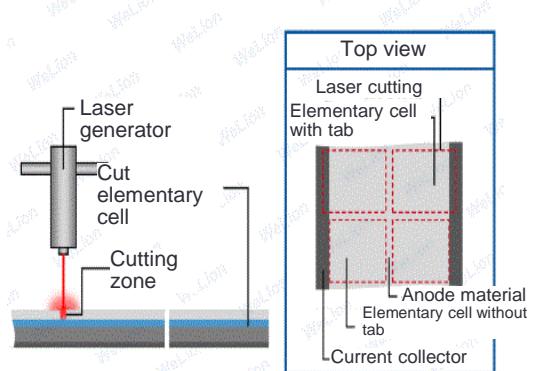
3.9 Application of AI data analysis


Providing machine optical optimization, mechanical precision optimization and comprehensive correction schemes in the equipment development process by calculating and simulating the laws of material, pole piece deformation, tension, friction and damping in the process of machine production, **so as to improve the manufacturing qualification rate and production efficiency.**

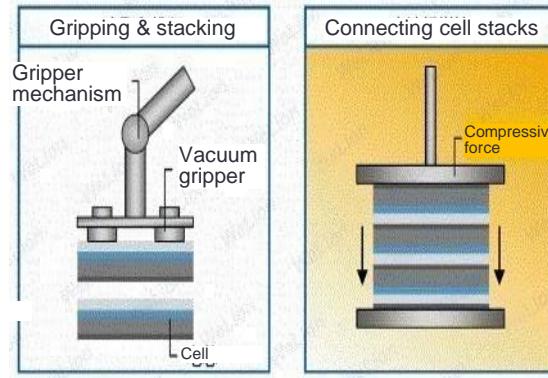
3.9 Application of AI data analysis


The closed-loop idea of lithium-ion battery manufacturing industry - data, learning, modeling, closed-loop and optimization

Equipment, materials and systems are interconnected, with more than 3,500 quality data monitoring points (developing priority in the future)

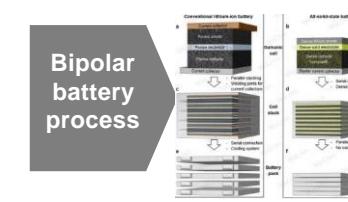


3.10 Polymer solid state/semi-solid state battery process


Polymer solid-state battery preparation process: Germany RWTH PEM preparation process

Cutting process of electrode-laser cutting

Connection process of single cell-extrusion molding



Preparation process of solid-state lithium-ion battery

Preparation method

Bipolar battery process

Ah-grade preparation process

Preparation process of Bollore extrusion method

Future development trends of semi-solid/solid-state batteries: dry electrode technique, hot metal cladding technique, intelligent manufacturing

Preparation characteristics

- ✓ Make solid electrolyte interlayer by coating
- ✓ The electrode is prepared in a similar way to existing liquid batteries and is compatible with existing production lines

- ✓ The elementary cells composed of multi-layer positive electrode-electrolyte-negative electrode are stacked and connected in series to manufacture a high-voltage single battery pack

- ✓ It is required to control the material mixing ratio and the dryness of the preparation, and the requirements for the drying room are high

- ✓ The extruded solid electrolyte is directly hot-pressed on the surface of the anode
- ✓ Single battery packs are prepared by winding method and assembled into modules

Process differences with liquid battery

- ▶ The difference is small
- ▶ The main difference is the preparation of the electrolyte interlayer
- ▶ Higher requirements for stacking and series connection process

- ▶ Differences between mixed material systems and drying methods

- ▶ The voltage, temperature and speed of extruder need to be strictly controlled
- ▶ Parameters (e.g., particle size of the feed) need to be strictly screened

By virtue of unique professional capabilities related to lithium-ion battery technology and production process, we provide enterprises with integrated consulting services

EY provides "traditional consulting + business/organization empowerment + resource integration/importing + investment"

Traditional consulting

Only providing standardized consulting services without participating in the subsequent implementation stage results in a disconnect between planning and implementation

VS

EY Consulting services

By virtue of the strong internal service system and resources, EY provides you with one-stop services accompanying customers in every step of their growth

Market insight

Conduct in-depth analysis and research on the **macro environment, industry trends, customers and competitors**, among others, and analyze and summarize factors that may affect **business models, business layout, market access**, etc., to conduct **feasibility studies** and provide **solutions** for customers' **investment in the lithium-ion battery industry**

Production and capacity expansion service

From a technical point of view, assist customers in the **diagnosis and optimization of lithium-ion battery materials and design systems, plant site selection and construction planning**, and provide a series of planning and management services required for **plant operation**, and comprehensively help customers **make production and capacity expansion decisions and production process optimization**

Mergers and acquisitions consulting

Considering the strategic development needs of customers, we provide customers with one-stop services from the initial **M&A strategy** development to **target selection**, providing **financial advisory services, transaction execution**, and **M&A integration services** after the transaction is completed, to ensure that M&A integration **achieves the expected value**

Human resource planning

Design blueprints for enterprise talent development planning through **talent status review, demand analysis, gap identification**, etc., and conduct **training activities** such as giving lectures and conducting field investigations on talent training to assist enterprises to complete **the construction of talent team**, as well as meet the needs of enterprise strategic development

Remarks: The "one-stop service" here focuses on integrated services centered on production line investment, and the marketing and supply chain services around lithium-ion batteries can be added in a timely manner according to customer needs

Production and capacity expansion services, especially the unique services of EY Consulting, provide seven dimensions of technical services

Technical services

Diagnosis and optimization	Site selection for new plant	Construction of new plant	Warehousing logistics planning	Production process planning	Materials and equipment supply	Project management
<input checked="" type="checkbox"/> Design and optimization of material systems	<input checked="" type="checkbox"/> Determine a long list of sites	<input checked="" type="checkbox"/> Determine the layout & design guidelines of the whole plant and workshops	<input checked="" type="checkbox"/> System simplification	<input checked="" type="checkbox"/> Prospective design of the process	<input checked="" type="checkbox"/> Supply market analysis	<input checked="" type="checkbox"/> Project time management
<input checked="" type="checkbox"/> Failure analysis	<input checked="" type="checkbox"/> Establish screening criteria and evaluation system	<input checked="" type="checkbox"/> Determine the general plan of the whole plant and workshops	<input checked="" type="checkbox"/> Separation of logistics and information flow	<input checked="" type="checkbox"/> Process simulation	<input checked="" type="checkbox"/> Find out potential suppliers	<input checked="" type="checkbox"/> Project cost management
<input checked="" type="checkbox"/> BMS design analysis	<input checked="" type="checkbox"/> Perform detailed analysis on the shortlist of sites	<input checked="" type="checkbox"/> Determine the detailed plan of the whole plant and workshops	<input checked="" type="checkbox"/> Flexible design	<input checked="" type="checkbox"/> Standard operating procedure (SOP) design	<input checked="" type="checkbox"/> Supplier survey and evaluation	<input checked="" type="checkbox"/> Project quality management
		<input checked="" type="checkbox"/> Prepare construction plans, conduct construction and installation	<input checked="" type="checkbox"/> Cost-benefit balance		<input checked="" type="checkbox"/> Business negotiation support	<input checked="" type="checkbox"/> Human resource management
						<input checked="" type="checkbox"/> Project risk management

Carol Zhao
Partner
EY Greater China Strategy and
Transactions

Direct Tel: 139 1015 4955

carol-zy.zhao@parthenon.ey.com

ey.com/parthenon

- ▶ Professional background
 - ▶ Ms. Zhao has nearly 20 years of management consulting experience
 - ▶ Ms. Zhao has been deeply committed to the fields of strategic planning, operations and investment, focusing on providing domestic and foreign enterprises with consulting services in industry research, market access, investment strategy, growth strategy, business due diligence, mergers and acquisitions integration, among others
 - ▶ Ms. Zhao specializes in providing one-stop consulting services for new energy, high-end manufacturing and other customers
 - ▶ Ms. Zhao has rich experience in serving large listed private enterprises and large state-owned enterprises, and has provided consulting services for many well-known foreign enterprises
 - ▶ Ms. Zhao has led and been engaged in dozens of major projects, which have been well received by customers
 - ▶ Before joining EY, Ms. Zhao worked for a global risk management consulting firm and a leading domestic accounting firm
- ▶ Education background
 - ▶ Master's degree from Central University of Finance and Economics
 - ▶ Bachelor's degree from University of International Business and Economics

A close-up photograph of two hands interacting with smartphones. One hand, with a dark sleeve, is holding a black smartphone with a white keyboard visible on its screen. The other hand, with a light-colored sleeve, is holding an orange smartphone. The hands are positioned as if comparing or using the two devices simultaneously.

Thanks for
watching

EY exists to build a better working world, helping to create long-term value for clients, people and society and build trust in the capital markets.

Enabled by data and technology, diverse EY teams in over 150 countries provide trust through assurance and help clients grow, transform and operate.

Working across assurance, consulting, law, strategy, tax and transactions, EY teams ask better questions to find new answers for the complex issues facing our world today.

EY refers to the global organization, and may refer to one or more, of the member firms of Ernst & Young Global Limited, each of which is a separate legal entity. Ernst & Young Global Limited, a UK company limited by guarantee, does not provide services to clients. Information about how EY collects and uses personal data and a description of the rights individuals have under data protection legislation are available via ey.com/privacy. EY member firms do not practice law where prohibited by local laws. For more information about our organization, please visit ey.com.

About EY-Parthenon

EY-Parthenon teams work with clients to navigate complexity by helping them to reimagine their eco-systems, reshape their portfolios and reinvent themselves for a better future. With global connectivity and scale, EY-Parthenon teams focus on Strategy Realized — helping CEOs design and deliver strategies to better manage challenges while maximizing opportunities as they look to transform their businesses. From idea to implementation, EY-Parthenon teams help organizations to build a better working world by fostering long-term value. EY-Parthenon is a brand under which a number of EY member firms across the globe provide strategy consulting services. For more information, please visit ey.com/parthenon.

© 2022 Ernst & Young, China
All Rights Reserved.

APAC no. 03015695
ED None

This material has been prepared for general informational purposes only and is not intended to be relied upon as accounting, tax or other professional advice. Please refer to your advisors for specific advice.

ey.com/china

Follow us on WeChat

Scan the QR code and stay up-to-date with the latest EY news.

