
The protocol:
how a universal
language for AI
is unlocking a
new era of machine
intelligence

Introduction: The integration impasse 3

Section I: A quiet revolution:
the forging of a new standard 4

Section II: Under the hood:
the architecture of connection 5

Section III: The new competitive edge:
from static knowledge to dynamic action 8

Section IV: A crowded field:
navigating the AI integration landscape 10

Section V: The price of power:
confronting the security frontier 14

Section VI: The road ahead: forging
the standard for an agentic future 17

Conclusion: the dawn of the composable age 19

References .. 19

Contents

2 The protocol: how a universal language for AI is unlocking a new era of machine intelligence

In the rapidly accelerating world of artificial intelligence, a quiet paradox has taken root at
the very heart of enterprise innovation. On one hand, the raw power of Large Language
Models (LLMs) has reached astonishing levels, capable of generating human-like text,
writing complex code, and reasoning through abstract problems. Yet, for all their cognitive
prowess, these digital minds have largely operated in isolation, powerful but disconnected,
their potential constrained by the very systems they are meant to revolutionize. They have
been, in the words of one analysis, “trapped behind information silos and legacy systems,”
unable to easily access the live, contextual data that fuels genuine intelligence.1 This
disconnect has created a frustrating and inefficient reality for both the developers building
the future of AI and the organizations seeking to deploy it.

At the core of this challenge lies a debilitating issue known in technical circles as the
“NxM” integration problem. Described as a “developer’s nightmare,” the concept is one of
exponential complexity: for every N number of distinct AI models, a unique, custom-built
connection is required to integrate with every M number of external tools, databases, or
software applications.1 If a company uses three different AI models and wants them to
interact with ten different internal systems — a customer relationship management (CRM)
platform, a document repository, a financial database, and so on — it would need to build
and maintain thirty separate, resource-intensive integrations. This brittle, bespoke approach
has proven to be a formidable barrier to progress, stifling innovation, dramatically inflating
development costs, and severely limiting the scalability and versatility of AI applications
across the board.

The consequences of this fragmentation are profound and tangible. AI models, cut off from
the flow of real-time information, are often hamstrung by “outdated knowledge issues,”
their responses limited to the static data they were trained on months or even years prior.
This forces human users into the inefficient role of a manual bridge, laboriously copying
and pasting information between their applications and an AI chat window, a disjointed
experience that undermines the very promise of seamless automation.1 This is more than
just a technical or financial burden; it represents a fundamental strategic bottleneck.
The inability of AI to easily and reliably connect to the outside world has been the primary
obstacle preventing it from evolving beyond a passive “chatbot,” capable only of answering
questions, into a proactive and truly useful “digital assistant” capable of performing
complex, real-world tasks. The integration impasse, born from the NxM problem, has not
just been an inconvenience; it has been the architectural roadblock holding back the next
generation of intelligent, autonomous AI. It is a problem that demanded a new, foundational
solution, a universal standard to finally teach all machines to speak the same language.

Introduction
The integration impasse

3The protocol: how a universal language for AI is unlocking a new era of machine intelligence

Section I
A quiet revolution: the forging
of a new standard

The protocol was born out of a direct dissatisfaction with
the NxM problem that had long plagued AI development.3
A technology research company recognized that for AI to
reach its full potential, it needed a standardized, open-
source framework to govern how it integrates and shares
data with the outside world. By establishing a common
“language” and interface, MCP set out to eliminate the
need for bespoke integrations, offering a model-agnostic
way for AI to read files, execute functions, and handle
contextual prompts from any number of external systems.

This ambition to standardize a chaotic technological
landscape draws powerful parallels to other transformative
moments in computing history. The protocol’s design
explicitly takes inspiration from the Language Server
Protocol (LSP), which unified the way code editors like
VS Code interact with different programming languages,
fostering a rich ecosystem of developer tools. Even more
fundamentally, MCP mirrors the impact of Open Database
Connectivity (ODBC), a standard introduced in the early
1990s that provided a single, standard API for applications
to access data from any database management system.
Before ODBC, developers had to write custom code for
each specific database they wanted to connect to; after
ODBC, they could write database-agnostic code once,
dramatically simplifying development and fostering an
explosion of data-driven applications.

The decision to architect MCP as an open standard, rather
than a proprietary plugin system, was a deliberate and
strategic one. This approach was designed to foster a
truly interoperable AI ecosystem and avoid the vendor
lock-in that has fragmented other technology sectors. This
open-source strategy is part of a well-understood playbook
for establishing a foundational technology. By sacrificing
initial proprietary control and lowering the barrier to
entry for all developers and companies, a technology
can achieve powerful network effects. As more tools are
exposed as MCP servers and more AI applications are built
as MCP clients, the value of the entire ecosystem increases
exponentially for every participant. A new tool instantly
becomes available to all existing applications, and a new
application can instantly access all existing tools. This
creates a virtuous cycle of adoption that, once it reaches a
critical mass, establishes a de facto industry standard that
becomes difficult for competing, closed-off approaches to
challenge. The rapid endorsement of MCP by technology
giants active in this market suggests this critical mass is
already forming. This positions MCP not as just another
product or framework, but as a candidate to become the
foundational infrastructure — the digital equivalent of
TCP/IP — for the entire agentic AI industry.

In November 2024, a quiet but profound shift began in the world of artificial intelligence when
a technology research company introduced an open standard designed to solve the debilitating
integration problem at the heart of the AI revolution. Known as the Model Context Protocol (MCP),
it aims to become a universal language for AI, promising to do for machine intelligence what
the ubiquitous USB-C standard did for consumer electronics.1 Where once a chaotic tangle of
proprietary chargers and cables was needed to connect a myriad of devices, a single, standardized
port now reigns. MCP was conceived with a similar, and arguably more ambitious, goal: to create
a universal digital connector that allows any AI application to seamlessly “plug and play” with any
compliant tool or data source, finally eliminating the need for countless custom adapters.

4 The protocol: how a universal language for AI is unlocking a new era of machine intelligence

Section II
Under the hood: the architecture
of connection

To achieve its ambitious goal of universal interoperability, the Model Context Protocol is built
upon a robust and elegantly simple client-server architecture. Drawing inspiration from proven
standards like the Language Server Protocol (LSP) and using the lightweight JSON-RPC 2.0
message format for communication, this layered design creates a clear separation of
concerns that is fundamental to the protocol’s security, scalability and flexibility. Rather than a
monolithic structure, MCP carefully delineates the roles and responsibilities of each component,
clarifying that the “intelligence” of an AI system is kept separate from the “capabilities” it can
access.5 This architecture is composed of three core components that are essential for secure
integration in an enterprise.

The three core components

1

2

3
Client

application

MCP client

Server

5The protocol: how a universal language for AI is unlocking a new era of machine intelligence

First is the Client application, which is the primary,
user-facing AI application. This can be broken into
two categories:

1	 A desktop assistant like Claude Desktop, an
AI-enhanced Integrated Development Environment
(IDE) like Cursor or VS Code

2	 A custom-built enterprise chatbot deployed as a web
application running in user’s browser.2

When deployed as a desktop assistant, it acts as the central
“orchestrator” or “container” of the entire operation. It is
responsible for managing connection, enforcing security
policies, handling user consent for sensitive actions, and
coordinating the overall flow of information to and from
the Large Language Model at its core.

However, when deployed as a custom-built web application,
much of the complexity stated above is delegated to an
MCP Client which is now running as a backend service
following BFF (Backend for Front-end) pattern. This
approach ends up creating a lightweight chat client who
has no knowledge of all the dependencies that its backend
must track. Key security concerns around LLM API key
management or access token handling are all done by at
the backend while the chat client maintains a persistent
connection for seamless flow of prompts and responses.

Second is the MCP client, when running as a desktop
assistant this component is embedded within the Client
Application but when hosted as a BFF it must run in
a backend web service. This functions as a dedicated
“translator” or “intermediary.”2 An MCP Client can work with
multiple MCP tools spread across multiple MCP Servers while
maintaining a secure, one-to-one connection with a single,
specific MCP Server. The client’s job is to take the AI model’s
needs or requests and translate them into the standardized
MCP format before sending them to the server, and to handle
the responses that come back. It serves as the session
manager, handling everything from connection interruptions,
user authorization, token caching to error handling.

Third is the Server, a lightweight and typically independent
program that acts as a secure “gateway” or “wrapper” for a
specific external system or data source. Each MCP server is
designed to be simple and focused, exposing a well-defined
set of capabilities for a single integration point, such as a
GitHub repository, a PostgreSQL database, a third-party API
like Slack, your own custom built Enterprise APIs or even the
local file system. The design philosophy is that servers should
be extremely easy to build, with the complex orchestration
logic handled by the MCP Client.4

The architectural separation of these components is
a hallmark of a maturing technological field. Early,
less-developed systems are often monolithic, with all
functions tightly interwoven, making them brittle and
difficult to maintain. MCP’s modular design, by contrast,
formalizes a separation of concerns that is defining the
emerging layers of the modern AI agent stack. The Host acts
as the “brain,” responsible for reasoning and orchestration.
The Server acts as the “hands and eyes,” providing the
connection to external capabilities. And the protocol itself,
MCP, serves as the standardized “nervous system” that
carries signals between them. This structure allows for
specialization and composability; one team can focus on
building a brilliant AI brain, while another can build a robust
server for a specific enterprise system, and the two can work
together seamlessly without custom integration, all thanks to
the standardized protocol layer in the middle.

Section II	 Under the hood: the architecture of connection

6 The protocol: how a universal language for AI is unlocking a new era of machine intelligence

The communication between these components follows a
well-defined, standardized process often referred to as a
digital handshake.3 The flow begins with:

Connection establishment, where an MCP Client within a
Host application initiates a secure connection to an MCP
Server, either locally via standard input/output (STDIO)
or remotely over HTTP with Streamable HTTP. This initial
handshake also involves negotiating the protocol version to
facilitate compatibility.4

Once connected, the process moves to Capability discovery.
The client queries the server to ask, in essence, “What can
you do?” The server responds with a detailed, structured
list of its available functionalities, which are organized into
three distinct primitives. This dynamic discovery allows

This entire interaction is governed by the three standardized primitives, which form the core language of MCP and define
how context and capabilities are provided. These are:

the AI application to understand at runtime what external
capabilities are available to it. Based on a user’s request, the
LLM within the Host then performs.

Tool/Resource selection, identifying the most appropriate
function or data source needed to fulfill the request.

This leads to Action execution. The client sends a formal
request to the server, specifying the chosen function and
any necessary arguments. The server then executes this
action—querying its underlying database, calling an external
API, or reading a file — and upon completion, it performs
the final step: Result return. The server sends the result
back to the client in a standardized JSON format, and the
Host application integrates this new information into the AI’s
context to formulate its final response to the user.

	■ Tools: These are executable
functions that allow the AI
model to act upon the world.
They are the verbs of the MCP
language, enabling the AI
to perform a side effect like
querying a database, sending
a Slack message, or creating
a new file. Tools are described
as “model-driven,” meaning
the AI model itself decides
when and how to invoke them,
giving it the “eyes and hands”
to perceive and manipulate its
digital environment.

	■ Resources: These represent
structured, typically read-only
data streams that provide
the AI with external context.
They are the nouns of MCP,
representing entities like files,
logs, API responses or database
schemas that the model can
access to inform its reasoning.
Resources are considered
“application-driven,” as the client
application often decides how
to fetch and use this data, for
instance, for caching or building
an analytical dashboard.7

	■ Prompts: These are reusable
instruction templates that guide
the AI’s behavior or provide
convenient shortcuts for the
user. They can be thought of
as conversational recipes or
pre-defined workflows, such
as a “summarize recent issues”
command that dynamically pulls
data from a project management
tool. Prompts are “user-driven,”
initiated directly by the end-user
to trigger a consistent and
predictable interaction with
the AI.7

This granular distinction between Tools (action), Resources
(data), and Prompts (guidance) is a deliberate design choice
that is foundational to MCP’s security and efficiency.

The interaction flow and its primitives

Section II	 Under the hood: the architecture of connection

It allows developers to precisely define and limit what an AI
can do, what it can know, and how it should behave, leading
to more controlled, reliable and powerful AI applications.

7The protocol: how a universal language for AI is unlocking a new era of machine intelligence

Section III
The new competitive edge:
from static knowledge to
dynamic action

For years, the utility of even the most powerful LLMs was
constrained by their “outdated knowledge” problem; they
could only reason based on the information present in
their training data, a static snapshot of the world from
months or years ago. MCP shatters this limitation. Through
its architecture, it provides AI with what the protocol’s
creators describe as “eyes and hands” in the digital world.
The AI can now use “Resources” to perceive live, real-
time data from any connected source, and use “Tools” to
manipulate external systems in a controlled and deliberate
manner. An AI assistant is no longer just a repository of
facts; it is an active participant in live business processes,
capable of querying today’s sales figures, reading the
latest project update, or executing a command in a live
production environment.

This leap in capability translates directly into tangible
business value and a significant economic advantage.
The most immediate impact is a dramatic reduction in

The true value of the Model Context Protocol extends far beyond simplifying code or standardizing
connections; it represents a fundamental paradigm shift in the role of artificial intelligence within
an organization. By providing a reliable bridge to the outside world, MCP is the key catalyst
transforming AI from a passive, knowledge-based “chatbot” into a proactive, “agentic” assistant
capable of real-time awareness and dynamic action.1 This evolution from static knowledge to
dynamic capability is where the protocol’s profound competitive advantage lies.

development costs and an accelerated time-to-market for
new AI-powered features. The protocol effectively transforms
the costly MxN integration problem into a simple M+N
opportunity; instead of multiplying complexity, each new
AI model or tool now adds value to the entire ecosystem
with minimal overhead. One analysis suggests that an
integration project that might have taken twelve weeks of
custom development could be completed in just three weeks
using MCP, representing a cost reduction of over 70%.8

Furthermore, MCP helps to democratize AI integration.
By abstracting away the low-level complexities of disparate
APIs, authentication mechanisms, and data formats, it lowers
the technical barrier for connecting AI to existing enterprise
systems. This empowers a broader range of professionals,
not just elite coders, to build and deploy AI solutions, shifting
the organizational focus from tedious API wrangling to
higher-level business logic and strategic innovation.

8 The protocol: how a universal language for AI is unlocking a new era of machine intelligence

	■ Enterprise AI assistants: Companies like Block and Apollo are leveraging MCP to build sophisticated internal
assistants. These AI agents can securely access and reason over proprietary company documents, query live
data from Customer Relationship Management (CRM) systems, and tap into internal knowledge bases to provide
employees with instant, context-aware answers and automate internal workflows.1

	■ Software development environments: In the world of software engineering, MCP is driving a new wave of
productivity. AI-enhanced IDEs such as Zed, Cursor, and Windsurf have integrated the protocol to provide coding
assistants with real-time access to a project’s entire codebase. This allows the AI to offer highly accurate code
suggestions, assist in complex debugging tasks, and even execute code directly, all without the developer ever
having to leave their primary work environment.

	■ Complex multi-agent workflows: Perhaps the most transformative application is MCP’s ability to facilitate
complex, cross-system automation involving multiple, collaborating AI agents. An MCP-enabled IT support bot,
for example, can autonomously diagnose a user’s problem by accessing knowledge bases, then query live device
logs for error messages, and finally interact with a ticketing system to create and assign a resolution task—all
without human intervention. Similarly, a sales workflow can be orchestrated across multiple agents: a calendar
agent schedules a meeting, which triggers an email agent to send a confirmation, which in turn prompts a
CRM agent to log the interaction and update the lead status.

	■ Regulated and sensitive industries: The protocol is also finding traction in high-stakes environments.
Medical research institutions are exploring MCP-powered workflows for sensitive tasks like data anonymization
and diagnostic pattern recognition from complex patient records. In finance, the ability to connect AI to real-time
market data and transaction systems is enabling more adaptive and effective fraud detection models.

These examples reveal a deeper strategic implication.
MCP is not just a tool for integrating AI; it is the foundational
infrastructure for what is known as the “composable
enterprise.” In this model, an organization’s digital
capabilities — its databases, applications, and business
logic — are exposed as standardized, interchangeable
building blocks via MCP servers. Autonomous AI agents
can then dynamically discover these building blocks,
combine them in novel ways, and orchestrate them to

execute new workflows on the fly, without requiring lengthy
and expensive software development cycles. An agent could,
for instance, combine a tool from the finance system with a
tool from the logistics system to answer a complex supply
chain query that previously required days of manual work
across two separate departments. This marks a fundamental
shift in how businesses can build and adapt their digital
operations, enabling a new and unprecedented level of
agility and intelligent automation.

The most compelling evidence of this value proposition is found in the array of powerful use cases that MCP has already
unlocked across industries:

Section III	 The new competitive edge: from static knowledge to dynamic action

9The protocol: how a universal language for AI is unlocking a new era of machine intelligence

Section IV
A crowded field: navigating
the AI integration landscape

While both MCP and OpenAI Function Calling are designed
to connect LLMs with external tools, they serve distinct
and fundamentally complementary roles. OpenAI Function
Calling (now often referred to simply as “Tools” within its
API) is primarily a mechanism for instruction generation.
Its core purpose is to enable an LLM to translate a user’s
natural language request into a structured, machinereadable
JSON object that specifies which function to call and what
parameters to use. For example, if a user asks, “What is the
weather in London?”, the model uses Function Calling to
output a directive like {“function”: “get_weather”, “location”:
“London”}. It is critical to understand that the model
itself does not execute this function; it merely formulates
the instruction.

The Model Context Protocol, in contrast, operates at the
next layer down: standardized execution. MCP provides
the universal protocol that takes the structured instruction
generated by any LLM’s function calling capability and
facilitates that it is securely and reliably executed by the
correct external tool. It manages the entire process, from
discovering which tools are available to invoking the function
and handling the response. In this relationship, the AI Host
application acts as the intermediary, converting the LLM’s
specific output format into a standardized MCP request that
can be understood by any MCP-compliant server.

The Model Context Protocol did not emerge in a vacuum. It entered a dynamic and crowded
ecosystem of technologies all aiming to enhance the capabilities of Large Language Models. To fully
grasp its strategic position, it is crucial to understand how MCP relates to — and differs from — other
prominent approaches, particularly OpenAI’s Function Calling mechanism and developer-centric
frameworks like LangGraph. This comparative analysis reveals a landscape of complementary
technologies that are beginning to form the distinct layers of a modern, sophisticated AI stack.

This layered architecture, with function calling for instruction
generation and MCP for standardized execution, is
analogous to the OSI model in computer networking, where
different protocols handle distinct layers of communication.
Function calling operates at a higher, model-specific layer,
translating intent into a structured call. MCP operates
at a lower, universal execution layer, supporting that call
can be consistently serviced across a diverse and growing
ecosystem of tools, regardless of which LLM originated it.
This modularity is a sign of increasing maturity in AI systems
architecture, moving away from monolithic designs toward
composable components essential for enterprise-grade
reliability and scale.

MCP vs. OpenAI Function Calling

10 The protocol: how a universal language for AI is unlocking a new era of machine intelligence

Similarly, MCP’s relationship with agent development
frameworks like LangGraph, AG2, and CrewAI is one
of synergy, not competition. These frameworks are
comprehensive, developer-centric toolkits designed for
building the “brain” of an AI application. They provide the
high-level logic for constructing complex chains of thought,
managing conversational memory, and orchestrating
multi-step tasks that may involve calling multiple tools in
a specific sequence. LangGraph is akin to an electronics
workbench, providing a versatile set of components for a
skilled developer to build a sophisticated, custom robot.

MCP, once again, provides the foundational standardized
plumbing that this brain connects to. It handles the
low-level, standardized connectivity to the outside world,
supporting that the agent built with LangGraph can discover

and interact with external tools and data sources in a
consistent, plug-and-play manner. This creates a powerful
division of labor: MCP abstracts away the complexities
of individual API integrations, allowing frameworks like
LangGraph to focus on what they do best — complex
reasoning, planning, and agentic control flows. This synergy
has led to the emergence of powerful hybrid architectures,
where developers use MCP for robust, standardized
tool access and a framework like LangGraph to build the
sophisticated orchestration logic that uses those tools to
achieve a goal.

The following table provides a concise comparison of
these technologies, clarifying their distinct roles within
the AI integration stack.

MCP vs. LangGraph and other agent development frameworks

Agent orchestration:
A developer framework for
building the logic, memory,
and reasoning chains of an
AI agent.

Aspect OpenAI Function Calling
Model Context Protocol
(MCP)

LangGraph & Agent
development frameworks

Primary Role Instruction Generation:
Translates natural language
into structured, model-specific
function calls.

Standardized execution:
Provides a universal,
model-agnostic protocol for
discovering and executing
tool calls.

The brain that coordinates
thoughts and actions into
complex tasks.

Framework-specific;
provides abstractions but is
not a protocol.

Building complex, custom
AI agents with multi-step
reasoning and memory.

Application/orchestration layer

Analogy

Standardization

Best for

Layer in stack

The thought or decision
to act.

Vendor-specific (e.g., OpenAI,
Claude, Gemini have different
formats).

Enabling any LLM to express
its intent to use a tool.	

Presentation/translation layer

The universal nervous system
that carries the signal to act.

Universal open standard,
aiming for industry-wide
adoption.

Robust enterprise
integrations, broad
interoperability, creating a
plug-and-play tool ecosystem.

Session/transport layer

Section IV	 A crowded field: navigating the AI integration landscape

11The protocol: how a universal language for AI is unlocking a new era of machine intelligence

Comparing MCP with A2A makes a lot more sense as MCP and A2A are essentially protocols and not frameworks. As MCP
attempts to standardize tool calling, A2A on the other hand standardizes agent-to-agent communication especially when
agents are built using disparate frameworks like AG2, LangGraph or CrewAI. Hence, A2A is not a competing standard but
a complementary one. A2A brings four core capabilities to the table:

MCP vs. A2A vs. other agentic protcols

This is how we define clear separation between these two protocols:

Connects agents to tools, APIs and resources

Think: how an agent uses its capabilities
(function calling)

Example: Agent uses MCP to call a weather
API too

Facilitates dynamic communication between
different agents and peers

Think: how agents collaborate, delegate and manage
shared tasks

Example: A travel agent (A2A) asks a flight booking
agent (A2A) to find flights

Agent2Agent ProtocolMCP (Model Context Protocol)

1	 Discovery: Agents must advertise their capabilities, so clients know when and how to utilize them for specific tasks.

2	 Negotiation: Clients and agents need to agree on communication methods that support multimodality.

3	 Task and Statement Management: Clients and agents need mechanisms to communicate task status, changes and
dependencies throughout task execution.

4	 Collaboration: Clients and agents must support dynamic interaction, enabling agents to request clarifications,
information, or sub-actions from client, other agents, or users.

Section IV	 A crowded field: navigating the AI integration landscape

12 The protocol: how a universal language for AI is unlocking a new era of machine intelligence

A protocol’s technical merits are only part of its story; its
ultimate success is often determined by the breadth and
speed of its adoption. On this front, MCP’s trajectory has
been remarkable. Since its introduction in late 2024, it has
seen swift and widespread endorsement from the industry’s
most influential players, rapidly positioning it as the de facto
standard for AI-tool interoperability.

Beyond the giants of AI, a vibrant ecosystem has quickly
formed around the protocol. Prominent technology

companies active in this market have incorporated MCP
into their platforms.1 By May 2025, a publicly available
directory listed over 5,000 active, community-developed
MCP servers, and that number grew to over 10,000
by mid-2025.

This rapid convergence around a single, open standard
signals a powerful network effect in motion, one that is
solidifying MCP’s role as the essential connective tissue
for the future of AI.

Industry adoption as a decisive factor

Section IV	 A crowded field: navigating the AI integration landscape

13The protocol: how a universal language for AI is unlocking a new era of machine intelligence

Section V
The price of power: confronting
the security frontier

While MCP was designed with security in mind,
incorporating a “local-first” philosophy and robust
authentication mechanisms like OAuth 2.1, its very function
as an interoperability layer introduces distinct challenges.1

The power to connect autonomous, intelligent systems directly to the world’s data and
operational tools is a double-edged sword. While the Model Context Protocol unlocks
unprecedented capabilities, it simultaneously creates a new and complex security frontier,
introducing novel attack surfaces that demand rigorous analysis and mitigation. The protocol,
acting as a bridge between powerful AI models and sensitive external systems, requires a
shift in security thinking — from protecting isolated applications to securing a dynamic and
interconnected ecosystem of agents and tools.

The successful deployment of MCP in enterprise
environments hinges on a clear-eyed understanding
of these risks and the implementation of proactive,
multi-layered defense strategies.

14 The protocol: how a universal language for AI is unlocking a new era of machine intelligence

A comprehensive analysis of the protocol reveals a catalog of critical threats that security professionals must address:

	■ Tool poisoning and indirect prompt injection: This represents one of the most insidious threats. An attacker
can manipulate the metadata of a tool — its description or parameters — to include hidden, malicious instructions.
Because an AI agent trusts this metadata to understand what a tool does, it can be tricked into performing
harmful actions. For instance, a tool description for a simple web search could be “poisoned” with a hidden
directive telling the AI to also exfiltrate sensitive files from a connected system. Similarly, an attacker can embed
malicious instructions in an external document or webpage (indirect prompt injection), which an AI agent might
then process and act upon without the user’s knowledge.

	■ Malicious server spoofing and tool shadowing: This is a significant supply chain risk where a malicious
MCP server is created to impersonate a legitimate, trusted one. An attacker could create a rogue server named
“GitHub-Connector” that perfectly mimics the real one but secretly sends copies of all accessed data to an
external location. Without robust validation and a trusted registry, AI agents and their users could be duped
into connecting to these “shadow” tools, leading to severe data breaches or system compromise.

	■ Privilege abuse and data aggregation risks: A common vulnerability arises when MCP tools are granted
overly broad permissions—for example, requesting full read/write access to a user’s email when only read access
is needed to perform a specific function. This excessive privilege creates a much larger “blast radius” if the tool
is ever compromised. Furthermore, by centralizing access to multiple services, MCP inadvertently creates a
powerful potential for data aggregation. An attacker who gains control of an agent could execute sophisticated
correlation attacks, combining seemingly innocuous pieces of data from different connected services to piece
together a highly sensitive profile of a user or an organization.

	■ Sandbox escape: To operate safely, many MCP servers and the tools they enable, especially those that execute
code, are run in a restricted “sandbox” environment. However, any vulnerability in this sandbox implementation
could be exploited by an attacker to “escape” into the host system, potentially allowing for arbitrary code
execution, unauthorized access to networks, and a complete compromise of the machine running the agent.

	■ Confused deputy problem: Attackers can exploit MCP servers acting as intermediaries to third-party APIs,
leading to confused deputy vulnerabilities. By using stolen authorization codes, they can obtain access tokens
without user consent. MCP proxy servers using static client IDs MUST obtain user consent for each dynamically
registered client before forwarding to third-party authorization servers (which may require additional consent).

The security challenges inherent in MCP highlight a
fundamental and permanent tension that will define the
future of agentic AI: the trade-off between capability and
control. The very features that make an AI agent powerful
and valuable — its autonomy, its ability to access diverse
tools, and its capacity to act on the world — are the same
features that create security risks. To make an agent more
capable, one might grant it access to more powerful tools,
which inherently increases the potential damage if it is
compromised. To make it more secure, one might severely

restrict its actions or require constant human approval for
every step, which diminishes its autonomy and utility. This
is not a problem that can be “solved” once and for all; it is
a dynamic equilibrium that must be perpetually managed.
The evolution of MCP and the broader field of agentic AI
will therefore be a continuous co-evolution, an arms race
between expanding capabilities and developing the ever
more sophisticated security, governance and oversight
frameworks needed to safely contain them.

Section V	 The price of power: confronting the security frontier

15The protocol: how a universal language for AI is unlocking a new era of machine intelligence

https://modelcontextprotocol.io/specification/draft/basic/security_best_practices#confused-deputy-problem

In response to this new threat landscape, the MCP community and its major adopters are championing a “security by
design” philosophy, embedding proactive mitigation strategies directly into the protocol’s architecture and best practices.
These measures include:

	■ Robust technical controls: A primary line of
defense involves implementing strong technical
isolation. This includes enforcing strict sandboxing
for server processes with network restrictions and
syscall filtering, ensuring that a compromised
server cannot affect the wider system. Mandatory
code signing to establish the provenance of tools
and enable revocation of compromised components
is also becoming a critical best practice.

	■ The principle of least privilege and granular
permissions: To counter privilege abuse, the
ecosystem is moving towards enforcing the principle
of least privilege, where every component is granted
only the absolute minimum permissions required
to perform its function. This involves moving
away from broad access scopes to fine-grained
authorization for specific resources and actions.

	■ User-in-the-loop and explicit consent:
A cornerstone of MCP security is keeping the human
user in control. This means implementing clear user
interfaces that transparently surface any sensitive
actions an AI agent wishes to perform and requiring
explicit user consent before accessing private data
or executing potentially impactful tools.

	■ Comprehensive auditing and monitoring:
To detect and respond to threats, robust auditability
is essential. This requires comprehensive logging
of all AI interactions, tool invocations, and data
access events, allowing security teams to trace
the actions of every agent and investigate any
suspicious activity. Continuous security testing of all
exposed MCP interfaces is also a crucial practice.

By embedding these security principles from the ground up,
the architects of the MCP ecosystem are working to build
a safer and more reliable foundation for an increasingly
autonomous AI future.

Section V	 The price of power: confronting the security frontier

16 The protocol: how a universal language for AI is unlocking a new era of machine intelligence

Section VI
The road ahead: forging the
standard for an agentic future

The near-term priorities for the next six to twelve months are centered on several key areas that address the most immediate
needs of developers and enterprises:

The Model Context Protocol is not a static specification but a rapidly evolving standard, with a clear
and ambitious development roadmap designed to guide its transition from a promising protocol
into ubiquitous, enterprise-grade infrastructure. The official roadmap outlines a series of strategic
priorities focused on hardening the protocol, expanding its capabilities, and fostering a mature,
trustworthy ecosystem. These developments are crucial steps toward realizing the long-term vision
of a truly interconnected and autonomous AI landscape.

	■ Validation and compliance: To build developer confidence and promote reliability across the ecosystem,
a significant investment is being made in validation. This includes the development of official Reference
Implementations for both clients and servers to showcase best practices, and the creation of automated
Compliance Test Suites. These suites will allow developers to verify that their implementations correctly adhere
to the MCP specification, guaranteeing consistent behavior and interoperability.

	■ Registry and service discovery: For MCP to reach its full potential, AI agents need a streamlined way to find
and connect to relevant tools. To solve this, the roadmap includes the development of an official MCP Registry.
This will function as a centralized API layer for server discovery and metadata management, acting as a kind
of DNS for AI tools. Third-party marketplaces and discovery services will be able to build on top of this registry,
allowing agents to dynamically locate, understand, and interact with trusted servers in real time.

	■ Enhanced agentic behavior and orchestration: As MCP becomes more deeply integrated into complex
workflows, the protocol is being enhanced to better support multi-agent systems. This includes the development
of Agent Graphs, a concept that will enable more complex agent topologies through namespacing and
graph-aware communication patterns. These improvements aim to facilitate more sophisticated Agent-to-Agent
(A2A) communication, where multiple specialized AI agents can collaborate on a single task. The roadmap also
focuses on improving human-in-the-loop experiences through more granular permissioning and standardized
patterns for eliciting user feedback or approval.

	■ Enterprise-grade authentication and security: Recognizing that security is paramount for enterprise
adoption, the roadmap places a strong emphasis on refining its authentication and authorization mechanisms.
This includes exploring alternatives to Dynamic Client Registration (DCR) to address operational challenges,
developing guidelines for more fine-grained authorization on a per-primitive basis, and adding support for
enterprise Single Sign-On (SSO) to simplify authorization management.9

	■ Multimodality: To ensure the protocol remains relevant as AI models evolve, the roadmap includes plans
to expand MCP’s capabilities beyond text. This involves adding support for additional modalities such as
video and other rich media types, as well as implementing streaming capabilities beyond text for more
interactive, real-time experiences.

17The protocol: how a universal language for AI is unlocking a new era of machine intelligence

This roadmap is more than a simple feature list; it is a
strategic blueprint designed to systematically build the
pillars of a successful and enduring open standard: trust,
accessibility, and governance. The intense focus on
validation, compliance suites, and reference implementations
is engineered to build trust among enterprise adopters
who require guarantees of reliability and consistency. The
development of a server registry and improved developer
tooling is designed to enhance accessibility, lowering the
barrier to entry and accelerating the network effects of
adoption. Finally, the stated commitment to community-led
development, shared governance, and collaboration with
formal standards bodies is a crucial step toward establishing
legitimate, neutral governance. This is essential for

establishing that MCP is perceived not as a single company’s
project, but as critical global infrastructure that all major
players can safely build upon.

Looking further ahead, the long-term vision for MCP over
the next three to five years is to become as fundamental to
the AI ecosystem as TCP/IP is to the internet. The protocol
is expected to evolve to address the specific requirements
of different industries, with tailored extensions for regulated
sectors like healthcare and finance. This trajectory points
toward a future defined by composability, where highly
autonomous AI workforces can dynamically orchestrate
complex tasks across a vast, interoperable, and secure
ecosystem of tools and services, all communicating through
the universal language of the protocol.

The recent update to the Model Context Protocol (MCP) introduces three new, crucial features: Roots, Sampling, and
Elicitation. These additions elevate the protocol from a simple tool-calling mechanism to a sophisticated framework for
building truly interactive and secure AI agents.

	■ Roots provides a standardized
way for clients to define
filesystem boundaries, facilitating
that servers can only access the
directories and files they’ve been
explicitly granted permission for,
thereby preventing path traversal
attacks and strengthening
data security.

	■ Sampling allows a server to
request a language model to
generate a response on its
behalf, enabling nested agentic
behaviors where an AI can
reason and act dynamically,
all without the server needing
its own API keys.

	■ Finally, the Elicitation primitive
enables servers to dynamically
request structured information
from the human user through
the client’s interface, allowing
for complex, multi-step
workflows that can adapt to
missing information or user
input in real-time.

1	 Ask for access to
your old and new
project folders
(Roots)

Combined example: An AI-powered project migration server could:

2	 Request user input
about migration
preferences
(Elicitation)

3	 Use AI to analyze code
patterns and suggest
changes (Sampling)

4	 Only work within the
approved directories
(Roots enforcement)

These new capabilities, combined with the continued
emphasis on security and a human-in-the-loop design,
highlight MCP’s rapid evolution from a promising idea into
a hardened, production-ready standard. The specification

is moving from merely connecting tools to orchestrating
complex, user-centric, and auditable interactions,
solidifying its position as the foundational infrastructure
for the next generation of intelligent systems.

Section VI	 The road ahead: forging the standard for an agentic future

18 The protocol: how a universal language for AI is unlocking a new era of machine intelligence

Conclusion
The dawn of the composable age

References

By establishing a universal, open standard, MCP has
systematically addressed the core challenges that have long
constrained the potential of AI. Its elegant client-server
architecture and well-defined primitives — tools, resources,
and prompts — have replaced the brittle complexity of the
NxM problem with a flexible and scalable plug-and-play
model. The protocol’s rapid adoption by the industry’s most
influential players active in this market, is not merely a
trend; it is a decisive convergence around a foundational
technology, signaling the emergence of a new, unified
standard for AI communication.

However, the journey ahead is one of careful navigation.
The immense power unlocked by MCP brings with it a new
frontier of security challenges that demand a steadfast
commitment to “security by design” principles, robust
technical controls, and unwavering user-centric governance.

The era of powerful but isolated artificial intelligence, defined by the frustrating and costly
“Integration Impasse,” is drawing to a close. The chaotic landscape of bespoke connectors and
fragmented systems is giving way to a new paradigm of standardized, seamless interoperability.
The Model Context Protocol stands as the primary catalyst for this transformation, providing
the architectural blueprint for a future where intelligent systems can securely and efficiently
connect to the world’s vast reserves of data and digital tools.

The protocol’s evolution will be a continuous balancing
act,a co-evolution of expanding agentic capabilities and the
sophisticated oversight frameworks required to manage
them responsibly. The official roadmap, with its strategic
focus on building trust, accessibility, and legitimate
governance, provides a clear and promising path forward.

The Model Context Protocol is more than just a technical
specification; it is the foundational layer for the next
generation of artificial intelligence. It provides the common
language necessary for AI to move beyond the confines of
passive information retrieval and become an active, dynamic
participant in our digital lives. In doing so, MCP is not merely
connecting systems — it is unlocking the potential for a truly
composable and autonomous age of machine intelligence,
the full implications of which are only just beginning
to be understood.

1.	 Model Context Protocol (MCP): What problem does it solve? — Collabnix, https://collabnix.com/model-context-protocol-mcp-what-problem-does-it-solve/

2.	 Solving the AI Integration Puzzle: How Model Context Protocol (MCP) is Transforming Enterprise Architecture | by Rick Hightower | Medium,
https://medium.com/@richardhightower/solving-the-ai-integration-puzzle-how-model-context-protocol-mcp-is-transforming-enterprise-8d134f291577

3.	 The Model Context Protocol (MCP) | Medium — Dirk Steynberg, https://bytemedirk.medium.com/the-model-context-protocol-57d0f6f04a47

4.	 The Model Context Protocol (MCP) — A Complete Tutorial | by Dr. Nimrita Koul — Medium,
https://medium.com/@nimritakoul01/the-model-context-protocol-mcp-a-complete-tutorial-a3abe8a7f4ef

5.	 Model Context Protocol: A Technical Overview | by Khushiyant - Medium,
https://khushiyant.medium.com/model-context-protocol-a-technical-overview-96c117a8736f

6.	 Exploring MCP Primitives: Tools, Resources, and Prompts | CodeSignal Learn, https://codesignal.com/learn/courses/developing-and-integrating-a-
mcpserver-in-python/lessons/exploring-and-exposing-mcp-server-capabilities-tools-resources-and-prompts

7.	 Beyond Tool Calling: Understanding MCP’s Three Core Interaction Types, https://devcenter.upsun.com/posts/mcp-interaction-types-article/

8.	 The Power of MCP: How Model Context Protocol Is Fueling the Future of AI-Driven Business,
https://www.tribalscale.com/insights/what-mcp-model-context-protocol-means

9.	 Roadmap - Model Context Protocol, https://modelcontextprotocol.io/development/roadmap

19The protocol: how a universal language for AI is unlocking a new era of machine intelligence

EY | Building a better working world

EY is building a better working world by creating
new value for clients, people, society and the
planet, while building trust in capital markets.

Enabled by data, AI and advanced technology,
EY teams help clients shape the future with
confidence and develop answers for the most
pressing issues of today and tomorrow.

EY teams work across a full spectrum of services
in assurance, consulting, tax, strategy and
transactions. Fueled by sector insights, a globally
connected, multidisciplinary network and diverse
ecosystem partners, EY teams can provide services
in more than 150 countries and territories.

All in to shape the future with confidence.

EY refers to the global organization, and may refer to one or more,
of the member firms of Ernst & Young Global Limited, each of
which is a separate legal entity. Ernst & Young Global Limited,
a UK company limited by guarantee, does not provide services
to clients. Information about how EY collects and uses personal
data and a description of the rights individuals have under data
protection legislation are available via ey.com/privacy. EY member
firms do not practice law where prohibited by local laws. For more
information about our organization, please visit ey.com.

© 2025 EYGM Limited.
All Rights Reserved.

BMC Agency
GA 132936172

EYG no. 009918-25Gbl
ED None

This material has been prepared for general informational purposes only and is not
intended to be relied upon as accounting, tax, legal or other professional advice.
Please refer to your advisors for specific advice.

ey.com

Deborah Berebichez Partner, AI Products Leader, Client Technology,

Ernst & Young U.S. LLP

deborah.berebichez@ey.com

Matt Perrins Director, EY Global Lead Architect, Client Technology,

Distinguished Technologist,

Ernst & Young U.S. LLP

matt.perrins@ey.com

Abdul Rehman Director, EY Technology, Client Technology,

Ernst & Young U.S. LLP

abdul.rehman@ey.com

Martin Stutchbury Executive Director,

Product Director for Smart Automation and Assurance Start-up,
Client Technology, Ernst & Young U.S. LLP

martin.stutchbury@ey.com

Pablo Cebro Partner, EY Global Head of Technology Platforms, Client Technology,

EY GDS (CS) Argentina S.R.L.

pablo.cebro@gds.ey.com

Co
nt

ac
ts

