The protocol:

how a universal
language for Al
is unlocking a -

—

The better the prompt.

The better the answer. Shape the future
The better the world works. with confidence

Contents

Introduction: The integration impasse 3

Section I: A quiet revolution:
the forging of anew standardcooovnnnne. 4

Section II: Under the hood:
the architecture of connectionccoevveeeeeiii... 5

Section Illl: The new competitive edge:
from static knowledge to dynamic action 8

Section IV: A crowded field:
navigating the Al integration landscape 10

Section V: The price of power:
confronting the security frontier 14

Section VI: The road ahead: forging

the standard for an agentic future 17
Conclusion: the dawn of the composable age 19
REfErENCESevvviiiiiiiieeiiereeevere e 19

The protocol: how a universal language for Al is ‘(inq a new era of machine intelligence

The integration impasse

In the rapidly accelerating world of artificial intelligence, a quiet paradox has taken root at
the very heart of enterprise innovation. On one hand, the raw power of Large Language
Models (LLMs) has reached astonishing levels, capable of generating human-like text,
writing complex code, and reasoning through abstract problems. Yet, for all their cognitive
prowess, these digital minds have largely operated in isolation, powerful but disconnected,
their potential constrained by the very systems they are meant to revolutionize. They have
been, in the words of one analysis, “trapped behind information silos and legacy systems,”
unable to easily access the live, contextual data that fuels genuine intelligence.! This
disconnect has created a frustrating and inefficient reality for both the developers building
the future of Al and the organizations seeking to deploy it.

At the core of this challenge lies a debilitating issue known in technical circles as the
“NxM" integration problem. Described as a “developer’s nightmare,” the concept is one of
exponential complexity: for every N number of distinct Al models, a unique, custom-built
connection is required to integrate with every M number of external tools, databases, or
software applications.! If a company uses three different Al models and wants them to
interact with ten different internal systems — a customer relationship management (CRM)
platform, a document repository, a financial database, and so on — it would need to build
and maintain thirty separate, resource-intensive integrations. This brittle, bespoke approach
has proven to be a formidable barrier to progress, stifling innovation, dramatically inflating
development costs, and severely limiting the scalability and versatility of Al applications
across the board.

The consequences of this fragmentation are profound and tangible. Al models, cut off from
the flow of real-time information, are often hamstrung by “outdated knowledge issues,”
their responses limited to the static data they were trained on months or even years prior.
This forces human users into the inefficient role of a manual bridge, laboriously copying
and pasting information between their applications and an Al chat window, a disjointed
experience that undermines the very promise of seamless automation.® This is more than
just a technical or financial burden; it represents a fundamental strategic bottleneck.

The inability of Al to easily and reliably connect to the outside world has been the primary
obstacle preventing it from evolving beyond a passive “chatbot,” capable only of answering
questions, into a proactive and truly useful “digital assistant” capable of performing
complex, real-world tasks. The integration impasse, born from the NxM problem, has not
just been an inconvenience; it has been the architectural roadblock holding back the next
generation of intelligent, autonomous Al. It is a problem that demanded a new, foundational
solution, a universal standard to finally teach all machines to speak the same language.

The protocol: how a universal language for Al is unlocking a new era of machine intelligence

A quiet revolution: the forging

of a new standard

In November 2024, a quiet but profound shift began in the world of artificial intelligence when

a technology research company introduced an open standard designed to solve the debilitating
integration problem at the heart of the Al revolution. Known as the Model Context Protocol (MCP),
it aims to become a universal language for Al, promising to do for machine intelligence what

the ubiquitous USB-C standard did for consumer electronics.! Where once a chaotic tangle of
proprietary chargers and cables was needed to connect a myriad of devices, a single, standardized
port now reigns. MCP was conceived with a similar, and arguably more ambitious, goal: to create

a universal digital connector that allows any Al application to seamlessly “plug and play” with any
compliant tool or data source, finally eliminating the need for countless custom adapters.

The protocol was born out of a direct dissatisfaction with
the NxM problem that had long plagued Al development.3
A technology research company recognized that for Al to
reach its full potential, it needed a standardized, open-
source framework to govern how it integrates and shares
data with the outside world. By establishing a common
“language” and interface, MCP set out to eliminate the
need for bespoke integrations, offering a model-agnostic
way for Al to read files, execute functions, and handle
contextual prompts from any number of external systems.

This ambition to standardize a chaotic technological
landscape draws powerful parallels to other transformative
moments in computing history. The protocol’s design
explicitly takes inspiration from the Language Server
Protocol (LSP), which unified the way code editors like

VS Code interact with different programming languages,
fostering a rich ecosystem of developer tools. Even more
fundamentally, MCP mirrors the impact of Open Database
Connectivity (ODBC), a standard introduced in the early
1990s that provided a single, standard API for applications
to access data from any database management system.
Before ODBC, developers had to write custom code for
each specific database they wanted to connect to; after
ODBC, they could write database-agnostic code once,
dramatically simplifying development and fostering an
explosion of data-driven applications.

The decision to architect MCP as an open standard, rather
than a proprietary plugin system, was a deliberate and
strategic one. This approach was designed to foster a

truly interoperable Al ecosystem and avoid the vendor
lock-in that has fragmented other technology sectors. This
open-source strategy is part of a well-understood playbook
for establishing a foundational technology. By sacrificing
initial proprietary control and lowering the barrier to
entry for all developers and companies, a technology

can achieve powerful network effects. As more tools are
exposed as MCP servers and more Al applications are built
as MCP clients, the value of the entire ecosystem increases
exponentially for every participant. A new tool instantly
becomes available to all existing applications, and a new
application can instantly access all existing tools. This
creates a virtuous cycle of adoption that, once it reaches a
critical mass, establishes a de facto industry standard that
becomes difficult for competing, closed-off approaches to
challenge. The rapid endorsement of MCP by technology
giants active in this market suggests this critical mass is
already forming. This positions MCP not as just another
product or framework, but as a candidate to become the
foundational infrastructure — the digital equivalent of
TCP/IP - for the entire agentic Al industry.

4 | The protocol: how a universal language for Al is unlocking a new era of machine intelligence

Section Il

Under the hood: the architecture
of connection

To achieve its ambitious goal of universal interoperability, the Model Context Protocol is built
upon a robust and elegantly simple client-server architecture. Drawing inspiration from proven
standards like the Language Server Protocol (LSP) and using the lightweight JSON-RPC 2.0
message format for communication, this layered design creates a clear separation of

concerns that is fundamental to the protocol’s security, scalability and flexibility. Rather than a
monolithic structure, MCP carefully delineates the roles and responsibilities of each component,
clarifying that the "“intelligence” of an Al system is kept separate from the “capabilities” it can
access.” This architecture is composed of three core components that are essential for secure
integration in an enterprise.

The three core components

1

Client
application

The protocol: how a universal language for Al is unlocking a new era of machine intelligence

Section Il Under the hood: the architecture of connection

First is the Client application, which is the primary, Second is the MCP client, when running as a desktop
user-facing Al application. This can be broken into assistant this component is embedded within the Client
two categories: Application but when hosted as a BFF it must runin
a backend web service. This functions as a dedicated
1 A desktop assistant like Claude Desktop, an “translator” or “intermediary.”2 An MCP Client can work with
Al-enhanced Integrated Development Environment multiple MCP tools spread across multiple MCP Servers while
(IDE) like Cursor or VS Code maintaining a secure, one-to-one connection with a single,

specific MCP Server. The client's job is to take the Al model’s
needs or requests and translate them into the standardized
MCP format before sending them to the server, and to handle
the responses that come back. It serves as the session
manager, handling everything from connection interruptions,
user authorization, token caching to error handling.

2 A custom-built enterprise chatbot deployed as a web
application running in user's browser.?

When deployed as a desktop assistant, it acts as the central
"orchestrator” or “container” of the entire operation. It is
responsible for managing connection, enforcing security
policies, handling user consent for sensitive actions, and
coordinating the overall flow of information to and from
the Large Language Model at its core.

Third is the Server, a lightweight and typically independent
program that acts as a secure “gateway” or “wrapper” for a
specific external system or data source. Each MCP server is

However, when deployed as a custom-built web application, designed to be simple and focused, exposing a well-defined
much of the complexity stated above is delegated to an set of capabilities for a single integration point, such as a
MCP Client which is now running as a backend service GitHub repository, a PostgreSQL database, a third-party API
following BFF (Backend for Front-end) pattern. This like Slack, your own custom built Enterprise APIs or even the
approach ends up creating a lightweight chat client who local file system. The design philosophy is that servers should
has no knowledge of all the dependencies that its backend be extremely easy to build, with the complex orchestration
must track. Key security concerns around LLM API key logic handled by the MCP Client.*

management or access token handling are all done by at
the backend while the chat client maintains a persistent
connection for seamless flow of prompts and responses.

The architectural separation of these components is

a hallmark of a maturing technological field. Early,
less-developed systems are often monolithic, with all
functions tightly interwoven, making them brittle and
difficult to maintain. MCP's modular design, by contrast,
formalizes a separation of concerns that is defining the
emerging layers of the modern Al agent stack. The Host acts
as the "brain,” responsible for reasoning and orchestration.
The Server acts as the “hands and eyes,” providing the
connection to external capabilities. And the protocol itself,
MCP, serves as the standardized “nervous system" that
carries signals between them. This structure allows for
specialization and composability; one team can focus on
building a brilliant Al brain, while another can build a robust
server for a specific enterprise system, and the two can work
together seamlessly without custom integration, all thanks to
the standardized protocol layer in the middle.

6 | The protocol: how a universal language for Al is unlocking a new era of machine intelligence

Section Il

Under the hood: the architecture of connection

The interaction flow and its primitives

The communication between these components follows a
well-defined, standardized process often referred to as a
digital handshake.? The flow begins with:

Connection establishment, where an MCP Client within a
Host application initiates a secure connection to an MCP
Server, either locally via standard input/output (STDIO)

or remotely over HTTP with Streamable HTTP. This initial
handshake also involves negotiating the protocol version to
facilitate compatibility.*

Once connected, the process moves to Capability discovery.
The client queries the server to ask, in essence, “What can
you do?" The server responds with a detailed, structured

list of its available functionalities, which are organized into
three distinct primitives. This dynamic discovery allows

the Al application to understand at runtime what external
capabilities are available to it. Based on a user's request, the
LLM within the Host then performs.

Tool/Resource selection, identifying the most appropriate
function or data source needed to fulfill the request.

This leads to Action execution. The client sends a formal
request to the server, specifying the chosen function and
any necessary arguments. The server then executes this
action—querying its underlying database, calling an external
API, or reading a file — and upon completion, it performs

the final step: Result return. The server sends the result
back to the client in a standardized JSON format, and the
Host application integrates this new information into the Al's
context to formulate its final response to the user.

This entire interaction is governed by the three standardized primitives, which form the core language of MCP and define

how context and capabilities are provided. These are:

m Tools: These are executable

Resources: These represent

m Prompts: These are reusable

functions that allow the Al
model to act upon the world.
They are the verbs of the MCP
language, enabling the Al

to perform a side effect like
querying a database, sending
a Slack message, or creating
a new file. Tools are described

structured, typically read-only
data streams that provide

the Al with external context.
They are the nouns of MCP,
representing entities like files,
logs, API responses or database
schemas that the model can
access to inform its reasoning.

instruction templates that guide
the Al's behavior or provide
convenient shortcuts for the
user. They can be thought of

as conversational recipes or
pre-defined workflows, such

as a “summarize recent issues”
command that dynamically pulls

data from a project management
tool. Prompts are “user-driven,”
initiated directly by the end-user
to trigger a consistent and
predictable interaction with

the Al.7

Resources are considered
"application-driven,” as the client
application often decides how

to fetch and use this data, for
instance, for caching or building
an analytical dashboard.”

as “model-driven,” meaning
the Al model itself decides
when and how to invoke them,
giving it the “eyes and hands"
to perceive and manipulate its
digital environment.

It allows developers to precisely define and limit what an Al
can do, what it can know, and how it should behave, leading
to more controlled, reliable and powerful Al applications.

This granular distinction between Tools (action), Resources
(data), and Prompts (guidance) is a deliberate design choice
that is foundational to MCP's security and efficiency.

The protocol: how a universal language for Al is unlocking a new era of machine intelligence | 7

The new competitive edge:
from static knowledge to
dynamic action

The true value of the Model Context Protocol extends far beyond simplifying code or standardizing
connections; it represents a fundamental paradigm shift in the role of artificial intelligence within
an organization. By providing a reliable bridge to the outside world, MCP is the key catalyst
transforming Al from a passive, knowledge-based “chatbot” into a proactive, “agentic” assistant
capable of real-time awareness and dynamic action.! This evolution from static knowledge to
dynamic capability is where the protocol's profound competitive advantage lies.

For years, the utility of even the most powerful LLMs was development costs and an accelerated time-to-market for
constrained by their “outdated knowledge” problem; they new Al-powered features. The protocol effectively transforms
could only reason based on the information present in the costly MxN integration problem into a simple M+N

their training data, a static snapshot of the world from opportunity; instead of multiplying complexity, each new
months or years ago. MCP shatters this limitation. Through Al model or tool now adds value to the entire ecosystem

its architecture, it provides Al with what the protocol’s with minimal overhead. One analysis suggests that an
creators describe as “eyes and hands"” in the digital world. integration project that might have taken twelve weeks of
The Al can now use “Resources” to perceive live, real- custom development could be completed in just three weeks
time data from any connected source, and use “Tools" to using MCP, representing a cost reduction of over 70%.8

manipulate external systems in a controlled and deliberate
manner. An Al assistant is no longer just a repository of
facts; it is an active participant in live business processes,
capable of querying today's sales figures, reading the
latest project update, or executing a command in a live
production environment.

Furthermore, MCP helps to democratize Al integration.

By abstracting away the low-level complexities of disparate
APIs, authentication mechanisms, and data formats, it lowers
the technical barrier for connecting Al to existing enterprise
systems. This empowers a broader range of professionals,
not just elite coders, to build and deploy Al solutions, shifting
This leap in capability translates directly into tangible the organizational focus from tedious APl wrangling to
business value and a significant economic advantage. higher-level business logic and strategic innovation.

The most immediate impact is a dramatic reduction in

The protocol: how a universal language for Allis"unlo ga nev‘era‘ machine int enc?l

.
r

Section Il The new competitive edge: from static knowledge to dynamic action

The most compelling evidence of this value proposition is found in the array of powerful use cases that MCP has already
unlocked across industries:

m Enterprise Al assistants: Companies like Block and Apollo are leveraging MCP to build sophisticated internal
assistants. These Al agents can securely access and reason over proprietary company documents, query live
data from Customer Relationship Management (CRM) systems, and tap into internal knowledge bases to provide
employees with instant, context-aware answers and automate internal workflows.*

Software development environments: In the world of software engineering, MCP is driving a new wave of
productivity. Al-enhanced IDEs such as Zed, Cursor, and Windsurf have integrated the protocol to provide coding
assistants with real-time access to a project's entire codebase. This allows the Al to offer highly accurate code
suggestions, assist in complex debugging tasks, and even execute code directly, all without the developer ever
having to leave their primary work environment.

Complex multi-agent workflows: Perhaps the most transformative application is MCP's ability to facilitate
complex, cross-system automation involving multiple, collaborating Al agents. An MCP-enabled IT support bot,
for example, can autonomously diagnose a user's problem by accessing knowledge bases, then query live device
logs for error messages, and finally interact with a ticketing system to create and assign a resolution task-all
without human intervention. Similarly, a sales workflow can be orchestrated across multiple agents: a calendar
agent schedules a meeting, which triggers an email agent to send a confirmation, which in turn prompts a

CRM agent to log the interaction and update the lead status.

Regulated and sensitive industries: The protocol is also finding traction in high-stakes environments.

Medical research institutions are exploring MCP-powered workflows for sensitive tasks like data anonymization
and diagnostic pattern recognition from complex patient records. In finance, the ability to connect Al to real-time
market data and transaction systems is enabling more adaptive and effective fraud detection models.

These examples reveal a deeper strategic implication. execute new workflows on the fly, without requiring lengthy
MCP is not just a tool for integrating Al; it is the foundational and expensive software development cycles. An agent could,
infrastructure for what is known as the “composable for instance, combine a tool from the finance system with a
enterprise.” In this model, an organization's digital tool from the logistics system to answer a complex supply
capabilities — its databases, applications, and business chain query that previously required days of manual work
logic — are exposed as standardized, interchangeable across two separate departments. This marks a fundamental
building blocks via MCP servers. Autonomous Al agents shift in how businesses can build and adapt their digital

can then dynamically discover these building blocks, operations, enabling a new and unprecedented level of
combine them in novel ways, and orchestrate them to aqgility and intelligent automation.

A crowded field: navigating
the Al integration landscape

The Model Context Protocol did not emerge in a vacuum. It entered a dynamic and crowded
ecosystem of technologies all aiming to enhance the capabilities of Large Language Models. To fully
grasp its strategic position, it is crucial to understand how MCP relates to — and differs from — other
prominent approaches, particularly OpenAl's Function Calling mechanism and developer-centric
frameworks like LangGraph. This comparative analysis reveals a landscape of complementary
technologies that are beginning to form the distinct layers of a modern, sophisticated Al stack.

MCP vs. OpenAl Function Calling

While both MCP and OpenAl Function Calling are designed

to connect LLMs with external tools, they serve distinct

and fundamentally complementary roles. OpenAl Function
Calling (now often referred to simply as “Tools" within its
API) is primarily a mechanism for instruction generation.

Its core purpose is to enable an LLM to translate a user's
natural language request into a structured, machinereadable
JSON object that specifies which function to call and what
parameters to use. For example, if a user asks, “What is the
weather in London?", the model uses Function Calling to
output a directive like {“function”:
“London"}. It is critical to understand that the model
itself does not execute this function; it merely formulates
the instruction.

The Model Context Protocol, in contrast, operates at the
next layer down: standardized execution. MCP provides
the universal protocol that takes the structured instruction
generated by any LLM's function calling capability and
facilitates that it is securely and reliably executed by the
correct external tool. It manages the entire process, from
discovering which tools are available to invoking the function
and handling the response. In this relationship, the Al Host
application acts as the intermediary, converting the LLM's
specific output format into a standardized MCP request that
can be understood by any MCP-compliant server.

101

get_weather”, “location":

This layered architecture, with function calling for instruction
generation and MCP for standardized execution, is
analogous to the OSI model in computer networking, where
different protocols handle distinct layers of communication.
Function calling operates at a higher, model-specific layer,
translating intent into a structured call. MCP operates

at a lower, universal execution layer, supporting that call

can be consistently serviced across a diverse and growing
ecosystem of tools, regardless of which LLM originated it.
This modularity is a sign of increasing maturity in Al systems
architecture, moving away from monolithic designs toward
composable components essential for enterprise-grade
reliability and scale.

The protocol: how a universal language for Al is unlocking a new era of machine intelligence

Section IV

A crowded field: navigating the Al integration landscape

MCP vs. LangGraph and other agent development frameworks

Similarly, MCP's relationship with agent development
frameworks like LangGraph, AG2, and CrewAl is one

of synergy, not competition. These frameworks are
comprehensive, developer-centric toolkits designed for
building the “brain” of an Al application. They provide the
high-level logic for constructing complex chains of thought,
managing conversational memory, and orchestrating
multi-step tasks that may involve calling multiple tools in
a specific sequence. LangGraph is akin to an electronics
workbench, providing a versatile set of components for a
skilled developer to build a sophisticated, custom robot.

MCP, once again, provides the foundational standardized
plumbing that this brain connects to. It handles the
low-level, standardized connectivity to the outside world,

and interact with external tools and data sources in a
consistent, plug-and-play manner. This creates a powerful
division of labor: MCP abstracts away the complexities

of individual API integrations, allowing frameworks like
LangGraph to focus on what they do best — complex
reasoning, planning, and agentic control flows. This synergy
has led to the emergence of powerful hybrid architectures,
where developers use MCP for robust, standardized

tool access and a framework like LangGraph to build the
sophisticated orchestration logic that uses those tools to
achieve a goal.

The following table provides a concise comparison of
these technologies, clarifying their distinct roles within
the Al integration stack.

supporting that the agent built with LangGraph can discover

Aspect

Primary Role

Analogy

Standardization

Layer in stack

Best for

The protocol: how a universal language for Al is unlocking a new era of machine intelligence

OpenAl Function Calling

Instruction Generation:
Translates natural language
into structured, model-specific
function calls.

The thought or decision
to act.

Vendor-specific (e.g., OpenAl,
Claude, Gemini have different
formats).

Presentation/translation layer

Enabling any LLM to express
its intent to use a tool.

Model Context Protocol
(MCP)

Standardized execution:
Provides a universal,
model-agnostic protocol for
discovering and executing
tool calls.

The universal nervous system
that carries the signal to act.

Universal open standard,
aiming for industry-wide
adoption.

Session/transport layer

Robust enterprise
integrations, broad
interoperability, creating a
plug-and-play tool ecosystem.

LangGraph & Agent
development frameworks

Agent orchestration:

A developer framework for
building the logic, memory,
and reasoning chains of an
Al agent.

The brain that coordinates
thoughts and actions into
complex tasks.

Framework-specific;
provides abstractions but is
not a protocol.

Application/orchestration layer

Building complex, custom
Al agents with multi-step
reasoning and memory.

|11

Section IV A crowded field: navigating the Al integration landscape

MCP vs. A2A vs. other agentic protcols

Comparing MCP with A2A makes a lot more sense as MCP and A2A are essentially protocols and not frameworks. As MCP
attempts to standardize tool calling, A2A on the other hand standardizes agent-to-agent communication especially when

agents are built using disparate frameworks like AG2, LangGraph or CrewAl. Hence, A2A is not a competing standard but
a complementary one. A2A brings four core capabilities to the table:

1 Discovery: Agents must advertise their capabilities, so clients know when and how to utilize them for specific tasks.

2 Negotiation: Clients and agents need to agree on communication methods that support multimodality.

3 Task and Statement Management: Clients and agents need mechanisms to communicate task status, changes and
dependencies throughout task execution.

4 Collaboration: Clients and agents must support dynamic interaction, enabling agents to request clarifications,
information, or sub-actions from client, other agents, or users.

This is how we define clear separation between these two protocols:

MCP (Model Context Protocol) Agent2Agent Protocol

Connects agents to tools, APIs and resources Facilitates dynamic communication between
different agents and peers

Think: how an agent uses its capabilities Think: how agents collaborate, delegate and manage
(function calling) NEICRENS

Example: Agent uses MCP to call a weather Example: A travel agent (A2A) asks a flight booking
API too agent (A2A) to find flights

12 | The protocol: how a universal language for Al is unlocking a new era of machine intelligence

Section IV A crowded field: navigating the Al integration landscape

Industry adoption as a decisive factor

A protocol's technical merits are only part of its story; its companies active in this market have incorporated MCP
ultimate success is often determined by the breadth and into their platforms.! By May 2025, a publicly available
speed of its adoption. On this front, MCP's trajectory has directory listed over 5,000 active, community-developed
been remarkable. Since its introduction in late 2024, it has MCP servers, and that number grew to over 10,000

seen swift and widespread endorsement from the industry’s by mid-2025.
most influential players, rapidly positioning it as the de facto

) " This rapid convergence around a single, open standard
standard for Al-tool interoperability.

signals a powerful network effect in motion, one that is
Beyond the giants of Al, a vibrant ecosystem has quickly solidifying MCP's role as the essential connective tissue
formed around the protocol. Prominent technology for the future of Al.

-~

§isin ‘wmﬂ.u:..

55 %10 g gy ‘
A e gy i
ey g P

7

The protocol: how a universal language for Al is unlocking a new era of machine intelligence | 13

The price of power: confronting
the security frontier

The power to connect autonomous, intelligent systems directly to the world's data and
operational tools is a double-edged sword. While the Model Context Protocol unlocks
unprecedented capabilities, it simultaneously creates a new and complex security frontier,
introducing novel attack surfaces that demand rigorous analysis and mitigation. The protocol,
acting as a bridge between powerful Al models and sensitive external systems, requires a
shift in security thinking — from protecting isolated applications to securing a dynamic and
interconnected ecosystem of agents and tools.

While MCP was designed with security in mind, The successful deployment of MCP in enterprise
incorporating a "local-first” philosophy and robust environments hinges on a clear-eyed understanding
authentication mechanisms like OAuth 2.1, its very function of these risks and the implementation of proactive,
as an interoperability layer introduces distinct challenges.? multi-layered defense strategies.

-:"'N
e |

.

14| The protocol: how a universal language for Al is unlocking a new era of machine intelligence

Section V The price of power: confronting the security frontier

A comprehensive analysis of the protocol reveals a catalog of critical threats that security professionals must address:

m Tool poisoning and indirect prompt injection: This represents one of the most insidious threats. An attacker
can manipulate the metadata of a tool — its description or parameters — to include hidden, malicious instructions.
Because an Al agent trusts this metadata to understand what a tool does, it can be tricked into performing
harmful actions. For instance, a tool description for a simple web search could be “poisoned” with a hidden
directive telling the Al to also exfiltrate sensitive files from a connected system. Similarly, an attacker can embed
malicious instructions in an external document or webpage (indirect prompt injection), which an Al agent might
then process and act upon without the user’s knowledge.

Malicious server spoofing and tool shadowing: This is a significant supply chain risk where a malicious

MCP server is created to impersonate a legitimate, trusted one. An attacker could create a rogue server named
"GitHub-Connector” that perfectly mimics the real one but secretly sends copies of all accessed data to an
external location. Without robust validation and a trusted registry, Al agents and their users could be duped
into connecting to these “shadow" tools, leading to severe data breaches or system compromise.

Privilege abuse and data aggregation risks: A common vulnerability arises when MCP tools are granted
overly broad permissions—for example, requesting full read/write access to a user's email when only read access

is needed to perform a specific function. This excessive privilege creates a much larger “blast radius” if the tool
is ever compromised. Furthermore, by centralizing access to multiple services, MCP inadvertently creates a
powerful potential for data aggregation. An attacker who gains control of an agent could execute sophisticated
correlation attacks, combining seemingly innocuous pieces of data from different connected services to piece
together a highly sensitive profile of a user or an organization.

Sandbox escape: To operate safely, many MCP servers and the tools they enable, especially those that execute
code, are run in a restricted “sandbox” environment. However, any vulnerability in this sandbox implementation
could be exploited by an attacker to “escape” into the host system, potentially allowing for arbitrary code
execution, unauthorized access to networks, and a complete compromise of the machine running the agent.

Confused deputy problem: Attackers can exploit MCP servers acting as intermediaries to third-party APIs,
leading to confused deputy vulnerabilities. By using stolen authorization codes, they can obtain access tokens
without user consent. MCP proxy servers using static client IDs MUST obtain user consent for each dynamically
registered client before forwarding to third-party authorization servers (which may require additional consent).

The security challenges inherent in MCP highlight a restrict its actions or require constant human approval for
fundamental and permanent tension that will define the every step, which diminishes its autonomy and utility. This
future of agentic Al: the trade-off between capability and is not a problem that can be "solved” once and for all; it is
control. The very features that make an Al agent powerful a dynamic equilibrium that must be perpetually managed.
and valuable — its autonomy, its ability to access diverse The evolution of MCP and the broader field of agentic Al
tools, and its capacity to act on the world — are the same will therefore be a continuous co-evolution, an arms race
features that create security risks. To make an agent more between expanding capabilities and developing the ever
capable, one might grant it access to more powerful tools, more sophisticated security, governance and oversight
which inherently increases the potential damage if it is frameworks needed to safely contain them.

compromised. To make it more secure, one might severely

The protocol: how a universal language for Al is unlocking a new era of machine intelligence | 15

https://modelcontextprotocol.io/specification/draft/basic/security_best_practices#confused-deputy-problem

Section V The price of power: confronting the security frontier

In response to this new threat landscape, the MCP community and its major adopters are championing a “security by
design” philosophy, embedding proactive mitigation strategies directly into the protocol's architecture and best practices.
These measures include:

m Robust technical controls: A primary line of
defense involves implementing strong technical
isolation. This includes enforcing strict sandboxing
for server processes with network restrictions and
syscall filtering, ensuring that a compromised
server cannot affect the wider system. Mandatory
code signing to establish the provenance of tools
and enable revocation of compromised components
is also becoming a critical best practice.

The principle of least privilege and granular
permissions: To counter privilege abuse, the
ecosystem is moving towards enforcing the principle
of least privilege, where every component is granted
only the absolute minimum permissions required

to perform its function. This involves moving

away from broad access scopes to fine-grained
authorization for specific resources and actions.

User-in-the-loop and explicit consent:

A cornerstone of MCP security is keeping the human
user in control. This means implementing clear user
interfaces that transparently surface any sensitive
actions an Al agent wishes to perform and requiring
explicit user consent before accessing private data
or executing potentially impactful tools.

Comprehensive auditing and monitoring:

To detect and respond to threats, robust auditability
is essential. This requires comprehensive logging

of all Al interactions, tool invocations, and data
access events, allowing security teams to trace

the actions of every agent and investigate any
suspicious activity. Continuous security testing of all
exposed MCP interfaces is also a crucial practice.

By embedding these security principles from the ground up,
the architects of the MCP ecosystem are working to build

a safer and more reliable foundation for an increasingly
autonomous Al future.

16| The protocol: how a universal language for Al is unlocking a new era of machine intelligence

The road ahead: forging the
standard for an agentic future

The Model Context Protocol is not a static specification but a rapidly evolving standard, with a clear
and ambitious development roadmap designed to quide its transition from a promising protocol
into ubiquitous, enterprise-grade infrastructure. The official roadmap outlines a series of strategic
priorities focused on hardening the protocol, expanding its capabilities, and fostering a mature,
trustworthy ecosystem. These developments are crucial steps toward realizing the long-term vision
of a truly interconnected and autonomous Al landscape.

The near-term priorities for the next six to twelve months are centered on several key areas that address the most immediate
needs of developers and enterprises:

Validation and compliance: To build developer confidence and promote reliability across the ecosystem,

a significant investment is being made in validation. This includes the development of official Reference
Implementations for both clients and servers to showcase best practices, and the creation of automated
Compliance Test Suites. These suites will allow developers to verify that their implementations correctly adhere
to the MCP specification, guaranteeing consistent behavior and interoperability.

Registry and service discovery: For MCP to reach its full potential, Al agents need a streamlined way to find
and connect to relevant tools. To solve this, the roadmap includes the development of an official MCP Registry.
This will function as a centralized API layer for server discovery and metadata management, acting as a kind

of DNS for Al tools. Third-party marketplaces and discovery services will be able to build on top of this registry,
allowing agents to dynamically locate, understand, and interact with trusted servers in real time.

Enhanced agentic behavior and orchestration: As MCP becomes more deeply integrated into complex
workflows, the protocol is being enhanced to better support multi-agent systems. This includes the development
of Agent Graphs, a concept that will enable more complex agent topologies through namespacing and

graph-aware communication patterns. These improvements aim to facilitate more sophisticated Agent-to-Agent
(A2A) communication, where multiple specialized Al agents can collaborate on a single task. The roadmap also
focuses on improving human-in-the-loop experiences through more granular permissioning and standardized
patterns for eliciting user feedback or approval.

Enterprise-grade authentication and security: Recognizing that security is paramount for enterprise
adoption, the roadmap places a strong emphasis on refining its authentication and authorization mechanisms.
This includes exploring alternatives to Dynamic Client Registration (DCR) to address operational challenges,
developing quidelines for more fine-grained authorization on a per-primitive basis, and adding support for
enterprise Single Sign-On (SSO) to simplify authorization management.®

Multimodality: To ensure the protocol remains relevant as Al models evolve, the roadmap includes plans
to expand MCP's capabilities beyond text. This involves adding support for additional modalities such as
video and other rich media types, as well as implementing streaming capabilities beyond text for more
interactive, real-time experiences.

The protocol: how a universal language for Al is unlocking a new era of machine intelligence | 17

Section VI

The road ahead: forging the standard for an agentic future

This roadmap is more than a simple feature list; it is a
strategic blueprint designed to systematically build the
pillars of a successful and enduring open standard: trust,
accessibility, and governance. The intense focus on
validation, compliance suites, and reference implementations
is engineered to build trust among enterprise adopters

who require guarantees of reliability and consistency. The
development of a server registry and improved developer
tooling is designed to enhance accessibility, lowering the
barrier to entry and accelerating the network effects of
adoption. Finally, the stated commitment to community-led
development, shared governance, and collaboration with
formal standards bodies is a crucial step toward establishing
legitimate, neutral governance. This is essential for

establishing that MCP is perceived not as a single company’s
project, but as critical global infrastructure that all major
players can safely build upon.

Looking further ahead, the long-term vision for MCP over
the next three to five years is to become as fundamental to
the Al ecosystem as TCP/IP is to the internet. The protocol
is expected to evolve to address the specific requirements
of different industries, with tailored extensions for regulated
sectors like healthcare and finance. This trajectory points
toward a future defined by composability, where highly
autonomous Al workforces can dynamically orchestrate
complex tasks across a vast, interoperable, and secure
ecosystem of tools and services, all communicating through
the universal language of the protocol.

The recent update to the Model Context Protocol (MCP) introduces three new, crucial features: Roots, Sampling, and
Elicitation. These additions elevate the protocol from a simple tool-calling mechanism to a sophisticated framework for

building truly interactive and secure Al agents.

m Roots provides a standardized
way for clients to define
filesystem boundaries, facilitating
that servers can only access the
directories and files they've been
explicitly granted permission for,

thereby preventing path traversal
attacks and strengthening
data security.

m Sampling allows a server to
request a language model to
generate a response on its
behalf, enabling nested agentic
behaviors where an Al can
reason and act dynamically,
all without the server needing
its own API keys.

m Finally, the Elicitation primitive
enables servers to dynamically
request structured information
from the human user through
the client's interface, allowing
for complex, multi-step
workflows that can adapt to
missing information or user
input in real-time.

Combined example: An Al-powered project migration server could:

1 Ask for access to
your old and new

Request user input
about migration
preferences
(Elicitation)

project folders
(Roots)

These new capabilities, combined with the continued
emphasis on security and a human-in-the-loop design,
highlight MCP's rapid evolution from a promising idea into
a hardened, production-ready standard. The specification

18|

3 Use Al to analyze code
patterns and suggest
changes (Sampling)

4 Only work within the
approved directories
(Roots enforcement)

is moving from merely connecting tools to orchestrating
complex, user-centric, and auditable interactions,
solidifying its position as the foundational infrastructure
for the next generation of intelligent systems.

The protocol: how a universal language for Al is unlocking a new era of machine intelligence

The dawn of the composable age

The era of powerful but isolated artificial intelligence, defined by the frustrating and costly
“Integration Impasse,” is drawing to a close. The chaotic landscape of bespoke connectors and
fragmented systems is giving way to a new paradigm of standardized, seamless interoperability.
The Model Context Protocol stands as the primary catalyst for this transformation, providing
the architectural blueprint for a future where intelligent systems can securely and efficiently
connect to the world's vast reserves of data and digital tools.

By establishing a universal, open standard, MCP has
systematically addressed the core challenges that have long
constrained the potential of Al. Its elegant client-server
architecture and well-defined primitives — tools, resources,
and prompts — have replaced the brittle complexity of the
NxM problem with a flexible and scalable plug-and-play
model. The protocol’s rapid adoption by the industry’s most
influential players active in this market, is not merely a
trend; it is a decisive convergence around a foundational
technology, signaling the emergence of a new, unified
standard for Al communication.

However, the journey ahead is one of careful navigation.
The immense power unlocked by MCP brings with it a new
frontier of security challenges that demand a steadfast
commitment to “security by design” principles, robust

technical controls, and unwavering user-centric governance.

The protocol’s evolution will be a continuous balancing
act,a co-evolution of expanding agentic capabilities and the
sophisticated oversight frameworks required to manage
them responsibly. The official roadmap, with its strategic
focus on building trust, accessibility, and legitimate
governance, provides a clear and promising path forward.

The Model Context Protocol is more than just a technical
specification; it is the foundational layer for the next
generation of artificial intelligence. It provides the common
language necessary for Al to move beyond the confines of
passive information retrieval and become an active, dynamic
participant in our digital lives. In doing so, MCP is not merely
connecting systems — it is unlocking the potential for a truly
composable and autonomous age of machine intelligence,
the full implications of which are only just beginning

to be understood.

References

1. Model Context Protocol (MCP): What problem does it solve? — Collabnix, https://collabnix.com/model-context-protocol-mcp-what-problem-does-it-solve/

2. Solving the Al Integration Puzzle: How Model Context Protocol (MCP) is Transforming Enterprise Architecture | by Rick Hightower | Medium,
https://medium.com/@richardhightower/solving-the-ai-integration-puzzle-how-model-context-protocol-mcp-is-transforming-enterprise-8d134f291577

3. The Model Context Protocol (MCP) | Medium - Dirk Steynberg, https://bytemedirk.medium.com/the-model-context-protocol-57d0f6f04a47

4. The Model Context Protocol (MCP) — A Complete Tutorial | by Dr. Nimrita Koul — Medium,
https://medium.com/@nimritakoul01/the-model-context-protocol-mcp-a-complete-tutorial-a3abe8a7f4ef

5. Model Context Protocol: A Technical Overview | by Khushiyant - Medium,

https://khushiyant.medium.com/model-context-protocol-a-technical-overview-96c117a8736f

6. Exploring MCP Primitives: Tools, Resources, and Prompts | CodeSignal Learn, https://codesignal.com/learn/courses/developing-and-integrating-a-
mcpserver-in-python/lessons/exploring-and-exposing-mcp-server-capabilities-tools-resources-and-prompts

7. Beyond Tool Calling: Understanding MCP's Three Core Interaction Types, https://devcenter.upsun.com/posts/mcp-interaction-types-article/

8. The Power of MCP: How Model Context Protocol Is Fueling the Future of Al-Driven Business,
https://www.tribalscale.com/insights/what-mcp-model-context-protocol-means

9. Roadmap - Model Context Protocol, https://modelcontextprotocol.io/development/roadmap

The protocol: how a universal language for Al is unlocking a new era of machine intelligence

I 19

Pablo Cebro

Partner, EY Global Head of Technology Platforms, Client Technology,
EY GDS (CS) Argentina S.R.L.
pablo.cebro@gds.ey.com

Deborah Berebichez

Contacts

Partner, Al Products Leader, Client Technology,
Ernst & Young U.S. LLP
deborah.berebichez@ey.com

Martin Stutchbury

Executive Director,

‘- Product Director for Smart Automation and Assurance Start-up,
< Client Technology, Ernst & Young U.S. LLP

martin.stutchbury@ey.com

Matt Perrins

Director, EY Global Lead Architect, Client Technology,
Distinguished Technologist,
Ernst & Young U.S. LLP

matt.perrins@ey.com

Abdul Rehman

Director, EY Technology, Client Technology,
Ernst & Young U.S. LLP
abdul.rehnman®ey.com

EY | Building a better working world

EY is building a better working world by creating
new value for clients, people, society and the
planet, while building trust in capital markets.

Enabled by data, Al and advanced technology,
EY teams help clients shape the future with
confidence and develop answers for the most
pressing issues of today and tomorrow.

EY teams work across a full spectrum of services

in assurance, consulting, tax, strategy and
transactions. Fueled by sector insights, a globally
connected, multidisciplinary network and diverse
ecosystem partners, EY teams can provide services
in more than 150 countries and territories.

All'in to shape the future with confidence.

EY refers to the global organization, and may refer to one or more,
of the member firms of Ernst & Young Global Limited, each of
which is a separate legal entity. Ernst & Young Global Limited,

a UK company limited by guarantee, does not provide services

to clients. Information about how EY collects and uses personal
data and a description of the rights individuals have under data
protection legislation are available via ey.com/privacy. EY member
firms do not practice law where prohibited by local laws. For more
information about our organization, please visit ey.com.

© 2025 EYGM Limited.
All Rights Reserved.

BMC Agency
GA 132936172

EYG no. 009918-25Gbl
ED None

This material has been prepared for general informational purposes only and is not
intended to be relied upon as accounting, tax, legal or other professional advice.
Please refer to your advisors for specific advice.

ey.com

