S
EY

EEnm Shape the future
The better the question. The better the answer. The better the world works. with confidence



When artificial intelligence is enabled,
will its combination with open-source"
coding platforms provide total value that
is greater than the sum of its parts?

As technology has advanced over the years, so too have the toolsets that actuaries have at their disposal to
accommodate increasingly complicated inquiries. This includes a mix of actuarial valuation and projection
models, spreadsheets, databases, process automation and analytics applications. Fast-forward to today and
we see many actuarial departments have modernized their technology stack in an effort to meet the
challenges of recent accounting and requlatory changes, such as US GAAP long-duration targeted
improvements (LDTI) and principles-based reserving. These modernization efforts have yielded consolidated
financial modeling platforms that uniformly service both valuation and projection needs, curated and
warehoused data capabilities, and automated processes with detective controls. These modernized toolsets
not only have helped companies meet the challenges of accounting-related change but have also taken steps
towards foundational advanced analytics capabilities to provide deeper business insights and respond more
nimbly to the unforeseen.

Despite the benefits cited, challenges remain. Needs continue to emerge for the highly customized treatment
of leading-edge product designs that are coupled with high “speed-to-market” demands. Older, outdated
technologies, such as a programming language (APL) or spreadsheets, still persist despite the availability of
superior alternatives. Runtime challenges remain omnipresent in more complicated use cases like asset-
liability management (ALM) and forecasting and planning and analysis (FP&A), further adding to the cloud
and distributed processing costs as demands continue to increase.

To address these challenges historically, actuarial teams would have faced onerous expenditures of energy,
time and money to address these challenges. At EY, we've challenged our teams with the question, “what
can we do differently this time?"” , or "what can we do to leverage the rapid evolution in Al and compute
capabilities, and maximize the human contribution?".

Recently, we have observed heightened interest in the market in two technologies that while individually
provide a lot of promise, collectively present unique synergistic opportunities to enhance the actuarial
toolset. Open-source programming languages, such as Python, present a simple, transparent and easy-to-
use coding platform that has wide adoption and a plethora of readily available libraries with useful
capabilities that can be easily leveraged. Artificial intelligence (Al), now ubiquitous in the business and
technology “town square,"” offers powerful efficiency gains and insights that the business world is still in the
process of harvesting. This article explores the tremendous power that the combination of Python and Al
offers, the practical applications in the actuarial toolkit and considerations for adding them to your existing
actuarial toolkit. For purposes of this article, we will focus on Python as a representative example of open-
source programming languages but could be extended to other languages (such as R, C#, Julia, Java, etc.).

2 EY



Getting to know Python

Drawing from its website, Python is described as “an interpreted, object-oriented, high-level programming
language with dynamic semantics. Its high-level built in data structures, combined with dynamic typing and
dynamic binding, make it very attractive for Rapid Application Development, as well as for use as a scripting
or glue language to connect existing components together."!

Python has gained popularity due to its relatively low learning curve, its large and active community of users
and developers, and its versatility — particularly for analytics domains like data science and machine learning.
Python also offers a wide range of ready-made libraries to accelerate development (more on this below).

To work effectively with Python, there are a few key components to consider

Basic installation Library acquisition

From its website (python.org), you can obtain and The real power of Python can be found in its
download the latest version to your relevant extensive ecosystem of libraries. A Python library
operating system of choice. contains preprogrammed functionality that can be

easily integrated within Python scripts to allow for
immediate usage and functionality. As of this
writing, there are hundreds of thousands of Python
libraries available for free and they can typically be
installed via a simple command line statement.

To work with the system, most users then install an
integrated development environment (IDE), such as
Visual Studio Code, PyCharm or IDLE, which provide
features like syntax highlighting, debugging and
code completion.

A summary of some of the more popular and relevant Python libraries is provided below.

Library Description Actuarial applications
pandas Generates "“dataframes” (structured containers) = Store input data and assumptions
dask The optimal package is chosen to optimize for different data = Store and manipulate modeled projection calculations
modin challenges (ease of setup, size of data set, parallelization
capabilities).
numpy Enables fast computation and vectorization, optimized with C = Any actuarial calculations, particularly where
“under the hood"” vectorization and speed are critical
sqglalchemy Allows direct read and write access to database applications like = Connect models to sourced input and output data
SQLServer, mySQL and Snowflake = Assist in the warehousing of assumption data
beautifulsoup Enables web “scraping” to extract data from HTML and XML files = Automated routines to pull enrichment data like interest
rates and equity returns
flask Provides a lightweight and flexible framework for building web = Actuarial process orchestration, triggering processes
applications and application programming interfaces (APIs) and tools via APIs
matplotlib Libraries for data visualization that support static, animated and = Complement back-end reporting capabilities
seaborn interactive plots
scikit-learn Powerful machine learning library for data preprocessing, = Predictive modeling and assumption setting
classification, regression, clustering and model evaluation
lifelib Actuarial modeling library that includes sample scripts and Jupyter |= Model validation and testing
Notebooks to accelerate modeling efforts = Pricing and profit testing
= Valuation and cash flow projections

“pPython,” Python Software Foundation website, https://www.python.org.

Other enablers

There are also a host of mostly free applications and sites that can enhance the coding experience. This includes Jupyter
Notebooks for integrating code with real-time analytics and documentation (more on this later); GitHub for storing,
sharing and collaborating on code; and copilot technologies (including GitHub CoPilot) that can provide real-time Al-
enabled support for code development.

3 EY



Benefits of Python

With these components in hand, Python offers benefits commensurate with the description shared above
from its own website, including:

i Speed to market 2 M Lightweight

Quick setup capabilities via Novice users learn Python Ability to create targeted
enablers like libraries quickly, leverage IT disciplines solutions that could present
more easily processing advantages

.8 Controllable 5 Eooor}zggzant with other ="

Industrial-strength versioning Easy access to APIs, and other

toolsets (e.qg., Git) support model built-in plug-ins, making Python

development lifecycle activities easily connectable to other
upstream and downstream
applications

Life insurers have commonly embraced one-off codesets or side models for very targeted purposes, often to
attempt to fill a gap left by more general-purpose technologies. For many, this has involved forays into APL,
Fortran, Visual Basic and Visual Basic for Applications, among others. The industry has since taken notice of
Python's flexibility and power, and we are seeing increased exploration and usage of it — not only to replace

outdated coding languages but also as a strategic tool for broader actuarial applications.




The benefits of applying Al to Python

Like most other industries, life insurers have been scrambling to find ways to harness the power of Al.
Technologies like generative Al (GenAl) provide groundbreaking capabilities to review and interpret text and

language with lightning speed.

Investments to-date have been largely directed to service operational demands; we see the proliferation of
this technology to the actuarial domain leading to better business insights that improve forecasts, help

efficiently manage capital, and ultimately drive earnings growth.

These Al capabilities have been rapidly evolving especially over the last two years, driven not only by the
increasing sophistication of the models themselves, but also by the democratization of Al, which sees Al
embedded in our daily lives. As Al has become more accessible and trusted, its adoption continues to expand
— whether that's with smarter search engines, an Al copilot to book your vacation or a coding companion.
The same can be said within the actuarial world where teams are using daily Al copilots both for more
mundane tasks (e.g., meeting minutes) and for more complex activities like code development.

Integration of Al capabilities with open-source coding platforms like Python presents particularly strong
synergistic opportunities, leveraging the open architecture nature of Python alongside Al's powerful ability
to process and interpret text. The convergence of these technologies into common platforms has resulted in
a Python coding experience that is incredibly efficient and optimized. Examples of this include:

Jump start code
development

A common application of GenAl is
to have it attempt to write Python

code based on a series of inquiries.

With some simple statements,
solutions such as ChatGPT are
able to write fulsome Python
scripts to accommodate requests.
While not perfect, it serves as a
great accelerator to jump-start
Python coding, especially for the
novice user.

Interrogate a codeset with Al
to gain quick insights

In lieu of reading model
documentation, searching through
code and making your own
interpretations, a GenAl tool can be
asked direct questions and return
insights and summaries that provide
direct answers. Because of the open
architecture nature of Python, these
interrogations are constrained by
proprietary “walls" around codesets,
which, if in place, can limit the
effectiveness of the inquiries.

Help refining code

Many are familiar with “intellitext,” a technology
that will attempt to help you finish sentences as
you type. Most coding platforms include this as
well; in the case of Microsoft's VS Code, a new
“sidecar" has been added called GitHub Copilot
that enables interrogation and suggests changes
that directly reference the code you are already
writing. So in lieu of doing a web browser search,
getting an answer and figuring out how to
incorporate in your code, the GitHub Copilot will
provide a contextualized answer to your inquiry
and suggest direct modifications to your code. If
that's not enough, it will also provide intellitext
support that will do a lot more than just anticipate
the completion of the current line of code.

The net result of this is a coding toolset that now can be constructed in a much more expeditious manner,
with a lower learning curve and with substantially more transparency.




Opportunities for actuarial

While we recognized earlier the modernization efforts that have successfully enhanced actuarial capabilities, we feel
there are additional opportunities for inclusion of this technology in the actuarial toolset. This technology could be
leveraged both for bespoke use — as many have used tools like Visual Basic for Applications, Excel or others for years —
as well as for more dedicated and targeted use cases, as noted below.

Use cases requiring a targeted solution

Some use cases require a great deal of detailed modeling while

simultaneously retaining the ability to possess fast processing

times in order to make the analysis actionable. Forecasting-

oriented use cases come to mind, such as product pricing,

capital planning and ALM, due to the level of detail and intensive

runtime calculations. An open architecture coding solution

empowered with Al can potentially provide:

= A more lightweight solution to the problem, having scope and
code to focus just on the demands of the use case in question
without needing to address others and be “all things to all
people”

= An ability to spin up solutions quickly, with the enablement
from Al tools for code generation and maintenance to meet
emerging and unforeseen demands quickly

= More expedient runtimes, resulting in added speed to market
and lower run production costs

Expansion of research and development
(R&D) insights

Python and its stable of libraries provide a powerful platform to
explore actuarial research areas, such as experience analysis
and runtime acceleration. A good example of this is in the
predictive modeling space to support experience analysis and
assumption setting. Establishing a Python environment,
especially equipped with some of the statistical libraries
mentioned earlier, provides ready access to a range of statistical
models and analytics to support experience analysis and
actuarial assumption determination. Seating the code within a
Jupyter Notebook enables the user to directly integrate
statistical analysis within the available codeset, providing real-
time analytics as the actuary refines the analytics approaches.
A unified environment and supporting GenAl methods facilitate
streamlined documentation of the outcomes.

Models with outdated codesets

Most insurance companies have selected utilities and models
residing on out-of-favor codesets or platforms, such as APL,
Cobol or Fortran. These utilities, while functional, can present
eventual challenges such as key person risk or the prospect
of the technology being sunset or becoming unsupported,
among others. Al could help migrate these utilities and
models into an open-source codeset that would build the
foundation for future flexibility.

Increasing end-to-end connectivity

Most actuarial modeling processes are stitched together
across a variety of technology platforms and process
automation toolsets. Some toolsets are more conversant
than others, presenting open APIs that can be connected to
allow more seamless automation solutioning, whereas others
require bespoke workarounds. While not a “silver bullet” for
that issue, insertion of Python to the end-to-end process
introduces a component that is very receptive to inter-
application connectivity and can stand to help clean things
up. We have seen insertion of Python beyond direct
modeling to include automation of run execution, parsing
run logs to provide end users with better and more
immediate diagnostic information, and to also scrape
external data sources to enrich data produced by the
modeling process.

Beyond the specific practical applications listed above, there are other second-order opportunities to consider, such as
addressing the evolution of the actuarial talent pool. The skill sets required to harness Python and Al cross over a bit
more into the IT realm, which can create opportunities for actuarial departments to rethink their staffing. This can
involve heavier involvement from IT to handle day-to-day modeling demands, potentially freeing up actuarial staff for

more actuarial-focused tasks and value-add.

EY



A “great power and great responsibility” situation

With any emerging technology solution, the initial — sometimes boundless — optimism one may feel must be checked by
the associated risks and considerations of its adoption. In this case, the power is clearly available with the prospect of

open architecture solutions for actuarial usage. But, as the saying goes, harnessing it comes with some degree of
heightened responsibility and consideration for other effective resident technologies already in play, including:

Increased need for refined model
development lifecycle (MDLC)
and governance

Open architecture is just that — open to user
modifications without constraints. Vendor-
provided solutions tend to levy some
constraints on the extent an individual can
modify their code base in an effort to preserve
the functionality and integrity of their products.
The governance benefits of this approach must
be appreciated and recognized as valuable
features of these models. As such, a move to
open-architecture systems such as Python will
require more industrial strength refinement and
enhancement of one's MDLC techniques. This
can include operating model refinements,
including the type of talent acquired to maintain
the models, and technology-based tools to help
restrict user access and help manage changes
to model files effectively.

What the future holds

Relationship with other
models

Introduction of new models will create
maintenance challenges with more
general-purpose actuarial systems
already in play. Inclusion of new
products, regulatory requirements or
analytics enhancements may bring the
prospect of updating multiple times
across models, depending on the scope
of your open-architecture-side models.
Consideration should be given to the
scope of Python usage, how tightly the
models must adhere to broader model
governance guidelines and how tethered
the models must be to methodologies
embedded in general-purpose modeling
applications.

Adapting talent pool skKill
sets

Actuaries are increasingly entering
the workforce with open
architecture coding skills gained
from their experience at university.

Nonetheless, skill set demands will
continue to evolve and the entrance
of these toolsets can raise the bar
for multidisciplinary talent, or
drawing more heavily on IT
resources. Furthermore, harnessing
the power of Al will require a
staffing model that understands
how to do so, while at the same
time promoting safeguards and
practices to secure company data
and associated trade secrets.

We mentioned at the outset there have been tremendous strides made by the industry in the transformation
agenda to meet the challenges of accounting changes, plenty of open-source technologies and Al are offering
a catalyst to explore the next generation of enhancements to the actuarial process, with model development
being a strong use case. The industry will continue exploring ways to monetize Al for its benefit, and it is
important for actuarial departmental research to keep pace as the landscape changes quickly. We see a
strong example showing how Al, when combined with another trusted application, like Python, can create a
synergy where the combined value has the prospect of being greater than the sum of its parts.

Ernst & Young LLP contacts

Eric Wolfe

Dave Czernicki
EY US Actuarial Modeling Leader
dave.czernicki@ey.com

Managing Director
eric.wolfe@ey.com

Sian Walker

Manager
sian.walker1®ey.com

EY



EY | Building a better working world

EY is building a better working world by creating
new value for clients, people, society and the
planet, while building trust in capital markets.

Enabled by data, Al and advanced technology,
EY teams help clients shape the future with
confidence and develop answers for the most
pressing issues of today and tomorrow.

EY teams work across a full spectrum of
services in assurance, consulting, tax, strategy
and transactions. Fueled by sector insights,

a globally connected, multi-disciplinary network
and diverse ecosystem partners, EY teams can
provide services in more than 150 countries
and territories.

All in to shape the future with confidence.

EY refers to the global organization, and may refer to one or more, of
the member firms of Ernst & Young Global Limited, each of which is a
separate legal entity. Ernst & Young Global Limited, a UK company
limited by guarantee, does not provide services to clients. Information
about how EY collects and uses personal data and a description of the
rights individuals have under data protection legislation are available
via ey.com/privacy. EY member firms do not practice law where
prohibited by local laws. For more information about our organization,
please visit ey.com.

Ernst & Young LLP is a client-serving member firm of
Ernst & Young Global Limited operating in the US.

© 2025 Ernst & Young LLP.
All Rights Reserved.

2504-10680-CS
US SCORE no. 26898-251US
ED None

This material has been prepared for general informational purposes only and is
not intended to be relied upon as accounting, tax, legal or other professional
advice. Please refer to your advisors for specific advice.

ey.com



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

